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Range Searches

 search(𝑘) looks for one specific item

 New operation RangeSearch (𝑥, 𝑥′)

 look for all items that fall within  given range

 input a range, i.e. interval  𝑙 = (𝑥, 𝑥′)

 may have open or closed ends

 want to report all KVPs in the dictionary with 𝑘 ∈ 𝑙

 example

5 10 11 17 18 33 45 51 55 77

RangeSearch (17,45] should return {18, 33, 45}

 Let 𝑠 be the output-size, i.e. the number of items in the range

 Need Ω(𝑠) time just to report the items in the range

 𝑠 can be anything between 0 and 𝑛

 Running time depends both on 𝑠 and 𝑛

 keep 𝑠 as a parameter when analyzing runtime

 𝑂(log 𝑛 + 𝑠) time would be the best possible with comparison based search

5 10 11 17 18 33 45 51 55 77



Range Search in Existing Dictionary Realizations

 Unsorted list/array/hash table
 range search requires Ω 𝑛 time

 must check for each item explicitly if it is in the range 

 Sorted array
 range search can be done in 𝑂 log𝑛 + 𝑠 time

5 10 11 17 18 33 45 51 55 77

 RangeSearch (16,50)

 use binary search to find 𝑖 s.t. 𝑥 is at (or would be at) 𝐴[𝑖]

𝑖

 use binary search to find 𝑖′ s.t. 𝑥′ is at (or would be at) 𝐴[𝑖′]

 Report 𝐴[𝑖] and 𝐴 𝑖′ if they are in the range

 BST
 can do range search in 𝑂(ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑠) time, will see in detail later

𝑖′

5 10 11 17 18 33 45 51 55 77

 report all items in 𝐴[𝑖 + 1… 𝑖′ − 1]
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Multi-dimensional Data

 Data with multiple aspects of interest

 laptops:  price, screen size, processor speed,  etc.

 employees: name, age, salary, …

 Dictionary for multi-dimensional data

 collection of 𝑑-dimensional items (or points)

 each item has 𝑑 aspects (coordinates): (𝑥0, 𝑥1,· · · , 𝑥𝑑−1)

 operations: insert, delete, search,  range search 

 Range search 

 example: laptops with 

1) 11 inches < screen size < 13 inches

2) 8GB < RAM < 16 GB

3) 1,500 CAD < price < 2,000 CAD

 We focus on 𝑑 = 2, i.e. points in Euclidean plane



Multi-Dimensional Range Search

 (Orthogonal) 𝑑-dimensional range search
 given a query rectangle 𝐴, find all points that lie within 𝐴

range-search query 
(1350 ≤ 𝑥 < 1550, 700 ≤ 𝑦 < 1100)

800

600

1200

1000

1200 1300  1400 1500 1600 1700 1800

price (CAD)

processor speed (MHz)



Multi-Dimensional Range Search
 Options for implementing 𝑑 dimensional dictionaries

 Reduce to one-dimensional dictionary

 combine  𝑑-dimensional key  into one dimensional key
 i.e. 𝑥, 𝑦 → 𝑥 + 𝑦 ∙ 𝑛2

 problem: range search on one aspect is not straightforward

 Use several dictionaries, one for each dimension
 problem: wastes space, inefficient search

 Example

 𝑂(𝑛 log𝑛) time to consolidate results of both 
searches, with AVL trees

 Total time is 𝑂(𝑛 log 𝑛), worse than exhaustive search
 far from 𝑂(𝑠 + log 𝑛), especially since 𝑠 = 0

 Better idea
 design new data structures specifically for points

 will assume points are in general position: no two 𝑥-coordinates or 
𝑦-coordinates are the same

 simplifies presentation, data structures can be generalized

 𝑛/2 points retrieved in each direction



Multi-Dimensional Range Search

 Partition trees
 organize space to facilitate efficient multidimensional search

 internal nodes are associated with spatial regions

 actual dictionary points stored only at leaves

 quadtrees, kd-trees

 Multi-dimensional range trees
 organize dictionary points to support efficient 𝑛𝐷 search with a variant of BST 

search

 both internal and leaf nodes store points, similar to one dimensional BST
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Quadtrees

𝑝1

0 16

16

𝑝9
𝑝3

𝑝5

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

 Have a set 𝑆 of  𝑛 points in the plane

 Need bounding box 𝑅

 width/height of 𝑅 is a power of 2

 smallest square[0, 2𝑘) × [0, 2𝑘) containing 
all points

 this also simplifies insert/delete

 find 𝑅 by computing the maximum 𝑥 and 𝑦
values in set 𝑆

 Quadtree is a hierarchy (tree) of regions

 Higher levels responsible for larger regions

 Lower levels responsible for smaller regions

 Leaves responsible for regions small enough to 
store one point

 Whenever possible, search rules out regions at 
higher level of hierarchy, achieving efficiency



Quadtree Construction Example

𝑝1

0 16

16

𝑝9
𝑝3

𝑝5

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

NENW

SW SE

 Convention: points on split lines 
belong to region on the right (or top)

??

 The root corresponds to the whole 
square

 Split the square into 4 equal regions



𝑝1

0 16

16

𝑝9
𝑝3

𝑝5

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8

empty subtrees

 keep subdividing regions (recursively) 
into smaller region until each region 
has one point

Quadtree Construction Example



Quadtree Construction Example

𝑝1

0

16

𝑝9
𝑝3

𝑝5

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 𝑝6 𝑝0 𝑝2 𝑝7

 keep subdividing regions (recursively) 
into smaller region until each region 
has one point



Quadtree Construction Example

𝑝1

0

16

𝑝3

𝑝5

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 𝑝6 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

 keep subdividing regions (recursively) 
into smaller region until each region 
has one point

𝑝9



Quadtree: Omit Empty Subtrees

𝑝1

0

16

𝑝9
𝑝3

𝑝5

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

0,4 × 8,12 𝑝8 𝑝6 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 𝑝1

NE NW SW SE

SW SE

NE NW SE

NE NW SW SE

 Easier for humans

 omit empty subtrees, label edges



Quadtree Building Summary
 Have 𝑛 points 𝑆 = 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , 𝑥𝑛−1, 𝑦𝑛−1

 all points are within a square 𝑅

 To build quadtree on 𝑆

 root 𝑟 corresponds to 𝑅

 if 𝑅 contains 0 (or 1) point 

 then root 𝑟 is empty (or a  leaf that stores 1 point)

 else partition 𝑅 into four equal subsquares (quadrants)

 𝑅𝑁𝐸 , 𝑅𝑁𝑊, 𝑅𝑆𝑊, 𝑅𝑆𝐸
 for each region, root has four subtrees 𝑣𝑁𝐸 , 𝑣𝑁𝑊 , 𝑣𝑆𝑊 , 𝑣𝑆𝐸

 recursively repeat this process at each nonleaf child

 convention: points on split lines belong to region on the right (or top)



Quadtree Search

𝑝1

16

𝑝9
𝑝3

𝑝5

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 𝑝6 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

 Analogous to trie or BST

 Three possibilities for where search ends

1. leaf storing point we search for (found)

2. leaf storing point different from search point (not found)

3. empty subtree (not found)

 Example: search(5,7)

(5,7)
8

(not found)

 Search is efficient if quadtree has small height



Quadtree Insert

 First perform search

 Two cases

1. search finds a leaf storing one point

 example: insert(5,7)

𝑝1

0

16

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

16

(5,7)

8

8

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 𝑝6 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝5



Quadtree Insert

𝑝1

0

16

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

16

(5,7)

8

8

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 𝑝6 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝5

 First perform search

 Two cases

1. search finds a leaf storing one point

 example: insert(5,7)

 repeatedly split the leaf while there are two points in one region



Quadtree Insert

 First perform search

 Two cases

1. search finds a leaf storing one point

 example: insert(5,7)

 repeatedly split the leaf while there are two points in one region

𝑝1

0

16

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

16

(5,7)

8

8

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1 (5,7) ∅ 𝑝6∅

4,8 × 4,8𝑝5



Quadtree Insert

 First perform search

 Two cases

1. search finds a leaf storing one point

2. search finds an empty subtree

 example: insert (5,13)

𝑝1

0

16

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

16

(5,13)

8

8

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 𝑝6 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝5



Quadtree Insert

 First perform search

 Two cases

1. search finds a leaf storing one point

2. search finds an empty subtree

 example: insert(5,13)

 expand empty subtree into a leaf storing insertion point

𝑝1

0

16

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

16

(5,13)

8

8

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

(5,13) ∅ 0,4 × 8,12 𝑝8 𝑝6 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝5



Quadtree Insert

 If we insert point outside the bounding box, no need to rebuild the 
tree due to bounding box being [0, 2𝑘) × [0, 2𝑘)

0

𝑝7𝑝2

𝑝0
𝑝6

8

8

0,8 × 0,8

𝑝6 𝑝0 𝑝2 𝑝7



Quadtree Insert

0

𝑝7𝑝2

𝑝0
𝑝6

8

8

𝑝4

16

16

0,16 × 0,16

∅ 0,8 × 0,8

𝑝6 𝑝0 𝑝2 𝑝7

𝑝4 ∅

 If we insert point outside the bounding box, no need to rebuild the 
tree due to bounding box being [0, 2𝑘) × [0, 2𝑘)



Quadtree Delete

 search for leaf containing the point

 example: delete(𝑝6)

𝑝1

16

𝑝9
𝑝3

𝑝5

𝑝4

𝑝8

𝑝6

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 𝑝6 ∅ 𝑝2 ∅

𝑝9 𝑝3 ∅ 𝑝1

8

𝑝6

𝑝2

 replace the leaf by empty subtree



Quadtree Delete

 search for leaf containing the point

 example: delete(𝑝6)

 replace the leaf by empty subtree

𝑝1

16

𝑝9
𝑝3

𝑝5

𝑝4

𝑝8

𝑝6

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 ∅ ∅ ∅

𝑝9 𝑝3 ∅ 𝑝1

8

𝑝6

𝑝2

𝑝2



Quadtree Delete

 search for leaf containing the point

 example: delete(𝑝6)

 replace the leaf by empty subtree

 if  parent has only one child, and the child is a leaf

𝑝1

16

𝑝9
𝑝3

𝑝4

𝑝8

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8

𝑝9 𝑝3 ∅ 𝑝1

8
∅ ∅ 𝑝2

𝑝5

 delete parent, make the only leaf child to be a child of its grandparent

 or quadtree root if no grandparent 

∅

𝑝2



Quadtree Delete

𝑝1

16

𝑝9
𝑝3

𝑝4

𝑝8

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 𝑝2

∅ ∅ 0,4 × 8,12 𝑝8

𝑝9 𝑝3 ∅ 𝑝1

8
𝑝5

𝑝2

 search for leaf containing the point

 example: delete(𝑝6)

 replace the leaf by empty subtree

 if  parent has only one child, and the child is a leaf
 delete parent, make the only leaf child to be a child of its grandparent

 if deleted parent, may cause a series of deletes going up the tree



Quadtree Delete

𝑝1

16

𝑝9
𝑝3

𝑝4

𝑝8

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 𝑝2

∅ ∅ 0,4 × 8,12 𝑝8

𝑝9 𝑝3 ∅ 𝑝1

8
𝑝5

𝑝2

 Cannot delete if parent has a single child, but non-leaf child

 example: delete(𝑝8)

𝑝8



Quadtree Delete

𝑝1

16

𝑝9
𝑝3

𝑝4

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 𝑝2

∅ ∅ 0,4 × 8,12

𝑝9 𝑝3 ∅ 𝑝1

8
𝑝5

𝑝2

 Cannot delete if parent has a single child, but non-leaf child

 non-leaf child corresponds to a region storing more than 1 point

 example: delete(𝑝8)

∅



Quadtree Analysis

 Search, insert, delete depend on quadtree height

 What is the height of a quadtree?

 can have very large height for bad distributions of points

 example with just three points

height = 1234

 can make height arbitrarily large by moving red points closer together



Quadtree Analysis
 spread factor of points 𝑆

𝛽(𝑆) =
𝐿

𝑑𝑚𝑖𝑛

 𝐿 = side length of 𝑅

 𝑑𝑚𝑖𝑛 is smallest distance between two points in 𝑆

𝐿

2ℎ
𝟐
𝑳

𝟐𝒉

 diagonal in smallest region is  2
𝐿

2ℎ

 smallest region contains one red point ⇒ 2
𝐿

2ℎ
< 𝑑𝑚𝑖𝑛

 rearrange:  2
𝐿

𝑑𝑚𝑖𝑛

< 2ℎ

 take log of both sides:   ℎ > log 2
𝐿

𝑑𝑚𝑖𝑛
= log 2𝛽(𝑆)

 Worst case: height ℎ ∈ Ω(log 𝛽(𝑆))

 until smallest region diagonal is < 𝑑𝑚𝑖𝑛, 2 red points are in the same region

 if height is ℎ, then we do ℎ rounds of subdivisions

 after ℎ subdivisions, smallest regions have side length  
𝐿

2ℎ



Quadtree Analysis

 spread factor of points 𝑆

𝛽(𝑆) =
𝐿

𝑑𝑚𝑖𝑛

 𝐿 = side length of 𝑅

 𝑑𝑚𝑖𝑛 is smallest distance between two 
points in 𝑆

 In the worst case, height ℎ ∈ Ω(log𝛽(𝑆))

 However, height can be much better even if the spread is large



Quadtree Analysis
 spread factor of points 𝑆

𝛽(𝑆) =
𝐿

𝑑𝑚𝑖𝑛

 𝐿 = side length of 𝑅

 𝑑𝑚𝑖𝑛 is smallest distance between two points in 𝑆

 In the worst case, height ℎ ∈ Ω(log𝛽(𝑆))

 In any case, height ℎ ∈ O(log 𝛽(𝑆))
𝐿

2ℎ−1
𝟐

𝑳

𝟐𝒉−𝟏

≤ 2
𝐿

2ℎ−1
𝑑𝑚𝑖𝑛 ≤ 𝑑(𝑝, 𝑞)

2ℎ−1 ≤ 2
𝐿

𝑑𝑚𝑖𝑛
⇒ ℎ ≤ 1 + log( 2𝛽(𝑆))= 2 𝛽(𝑆)

 let 𝑣 be an internal node at depth ℎ − 1

 there are at lest 2 points 𝑝, 𝑞 inside its region

 maximum distance between 2 points in such region is  2
𝐿

2ℎ−1

 𝑑𝑚𝑖𝑛 ≤ 𝑑(𝑝, 𝑞)

𝑝

𝑞

 the corresponding region has side length  
𝐿

2ℎ−1



Quadtree Analysis

 spread factor of points 𝑆

𝛽(𝑆) =
𝐿

𝑑𝑚𝑖𝑛

 𝐿 = side length of 𝑅

 𝑑𝑚𝑖𝑛 is smallest distance between two 
points in 𝑆

 In the worst case, height ℎ ∈ Ω(log𝛽(𝑆))

 In any case, height ℎ ∈ O(log 𝛽(𝑆))

 to guarantee  good performance,  log𝛽(𝑆) should be much smaller than 𝑛

 Complexity to build initial tree: Θ(𝑛ℎ) worst-case

 expensive if large height (as compared to the number of points)



Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node,  no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

160

𝑝10

∅ ∅ 𝑝10 𝑝6



Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node,  no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node,  no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node,  no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9

𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node,  no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node,  no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node,  no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node,  no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node,  no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node,  no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node,  no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node,  no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node,  no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node,  no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



Quadtree Range Search
Qtree::RangeSearch(𝑟 ← 𝑟𝑜𝑜𝑡, 𝐴)

𝑟 : quadtree root, 𝐴: query rectangle

let 𝑅 be the region associated with 𝑟

if 𝑅 ⊆ 𝐴 then      //inside node

report all points below 𝑟

return
if  𝑅 ∩ 𝐴 = ∅ then //outside node

return
// boundary node, recurse if not a leaf
if 𝑟 is a leaf then // leaf, do not recurse

𝑝 ← point stored at 𝑟
if 𝑝 is in 𝐴 return 𝑝
else return

for each child 𝑣 of 𝑟 do
QTree-RangeSearch(𝑣, 𝐴)

 Code assumes each quadtree node stores the associated square

 Alternatively, these could be re-computed during search

 space-time tradeoff



RangeSearch Analysis

 Running time is number of visited nodes + output size

 No good bound on number of visited nodes

 may have to visit nearly all nodes in the worst case

 Θ(𝑛ℎ) worst-case 

 this is worse than exhaustive search

 even if the range search returns empty result

 but in practice usually much faster



Quadtrees in other dimensions

 Quad-tree of 1-dimensional points

[0,32)

[0,16)

00000

0

[8,16)

1

0

[16,32)

1

0

01001

1
[12,16)

[24,32)

0
[24,28)

1

11100

1

0 1 0 1

01100 01110 11000 11010

 Same as a trie

 with splitting stopped once key is unique

points 0 9 12 14 24 26 28

base 2 00000 01001 01100 01110 11000 11010 11100



Quadtree summary

 Quadtrees easily generalize to higher dimensions
 octrees, etc.

 but rarely used beyond dimension 3

 Easy to compute and handle

 No complicated arithmetic, only divisions by 2
 bit-shift if the  width/height of 𝑅 is a power of 2

 Space potentially wasteful, but good if points are well-distributed

 Variation
 stop splitting earlier and allow up to 𝑘 points in a leaf for some fixed 𝑘



Outline

 Range-Searching in Dictionaries for Points

 Range Search Query

 Multi-Dimensional Data

 Quadtrees

 kd-Trees  

 Range Trees  

 Conclusion



kd-tree motivation

 Quadtree can be very unbalanced

 kd-tree idea

 split into regions with equal number of points

 easier to split into two regions with equal number of points (rather 
than four regions)

 can split either vertically or horizontally

 alternating vertical and horizontal splits gives range search efficiency



kd-tree example
 No need for bounding box

 Root corresponds to the whole ℛ2
𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1

ℛ2 is split into two half regions

 First find the best vertical split


𝑛

2
on one side and

𝑛

2
and points on the other

𝑥 < 𝑝8.𝑥



kd-tree example
 No need for bounding box

 Root corresponds to the whole ℛ2
𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1

ℛ2 is split into two half regions

 First find the best vertical split


𝑛

2
on one side and

𝑛

2
and points on the other

𝑥 < 𝑝8.𝑥

 Because points are in general 
position, always can split in two 
(equal or almost equal subsets)

 Because points are in general position, always can split in two 
equal (or almost equal subsets)

 General position means no two 𝑥 or 𝑦 coordinates are the same
 Consider the points below not in general position

 Cannot divide them in two equal subsets by a vertical line



kd-tree example
 No need for bounding box

 Root corresponds to the whole ℛ2
𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1

ℛ2 is split into two half regions

 First find the best vertical split


𝑛

2
on one side and

𝑛

2
and points on the other

𝑥 < 𝑝8.𝑥

y n



kd-tree example
 Recurse on the resulting regions

 if they have more than one point

 Alternate split direction𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1 𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦



 Recurse on the resulting regions

 if they have more than one point

 Alternate split direction𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1 𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example



 Recurse on the resulting regions

 if they have more than one point

 Alternate split direction𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1 𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

𝑥 < 𝑝2.𝑥



 Recurse on the resulting regions

 if they have more than one point

 Alternate split direction𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1 𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

𝑥 < 𝑝2.𝑥

y n

𝑝0 𝑝2



 Recurse on the resulting regions

 if they have more than one point

 Alternate split direction𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1 𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

𝑥 < 𝑝2.𝑥

y n

𝑝0 𝑝2

𝑥 < 𝑝9.𝑦



 Recurse on the resulting regions

 if they have more than one point

 Alternate split direction𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1 𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

𝑥 < 𝑝2.𝑥

y n

𝑝0 𝑝2

𝑥 < 𝑝9.𝑥

y

𝑝3

n



𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1

𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

𝑥 < 𝑝2.𝑥

y n

𝑝0 𝑝2

𝑥 < 𝑝9.𝑥

y

𝑝3

n

𝑦 < 𝑝9.𝑦



𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1

𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

𝑥 < 𝑝2.𝑥

y n

𝑝0 𝑝2

𝑥 < 𝑝9.𝑥

y

𝑝3

n

𝑦 < 𝑝9.𝑦

y n

𝑝1 𝑝9



𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1

𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

𝑥 < 𝑝2.𝑥

y n

𝑝0 𝑝2

𝑥 < 𝑝9.𝑥

y

𝑝3

n

𝑦 < 𝑝9.𝑦

y n

𝑝1 𝑝9

𝑦 < 𝑝6.𝑦



𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1

𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

𝑥 < 𝑝2.𝑥

y n

𝑝0 𝑝2

𝑥 < 𝑝9.𝑥

y

𝑝3

n

𝑦 < 𝑝9.𝑦

y n

𝑝1 𝑝9

𝑦 < 𝑝6.𝑦

y n



kd-tree example

𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1

𝑥 < 𝑝8.𝑥

𝑦 < 𝑝1.𝑦

y n

𝑦 < 𝑝6.𝑦
y

𝑥 < 𝑝2.𝑥

n

𝑥 < 𝑝9.𝑥

y

𝑥 < 𝑝5.𝑥

n

𝑥 < 𝑝6.𝑥
y

𝑝0

n

𝑝2

y

𝑝3
𝑦 < 𝑝9.𝑦
y

𝑝1

n

𝑝9

y

𝑝7

n

𝑝5

n y

𝑝8

n

𝑦 < 𝑝4.𝑦
y

𝑝6

n

𝑝4



kd-tree example

𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1
𝑥 < 𝑝8.𝑥

𝑦 < 𝑝1.𝑦

y n

𝑦 < 𝑝6.𝑦

y

𝑥 < 𝑝2.𝑥

n

𝑥 < 𝑝9.𝑥

y

𝑥 < 𝑝5.𝑥

n

𝑥 < 𝑝6.𝑥

y

𝑝0

n

𝑝2

y

𝑝3 𝑦 < 𝑝9.𝑦

y

𝑝1

n

𝑝9

y

𝑝7

n

𝑝5

n y

𝑝8

n

𝑦 < 𝑝4.𝑦

y

𝑝6

n

𝑝4



Building kd-trees

 Points 𝑆 = 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , 𝑥𝑛−1, 𝑦𝑛−1
 Build kd-tree with initial  𝑥-split 

 if |𝑆| ≤ 1 create a leaf and return

 else find 𝑥-coordinate in position 𝑚 =
𝑛

2
in sorted list of 𝑥 -coordinates 

or partition by calling quickSelect(𝑆,
𝑛

2
)

 partition 𝑆 into   𝑆𝑥<𝑚 and  𝑆𝑥≥𝑚 by comparing the 𝑥 coordinate of a 
point  with 𝑚

 create left subtree recursively (splitting on 𝑦) for points 𝑆𝑥<𝑚
 create right subtree recursively (splitting on 𝑦) for points 𝑆𝑥≥𝑚
 each node keeps track of the splitting line

 Building with initial 𝑦-split symmetric

 Points on split lines belong to right/top side



kd-tree Construction Running Time

 Partition 𝑆 in Θ(𝑛) expected time with QuickSelect

 Both subtrees have ≈ 𝑛/2 points

 Sloppy recurrence

 𝑇𝑒𝑥𝑝 𝑛 = 2𝑇𝑒𝑥𝑝
𝑛

2
+ 𝑂(𝑛)

 resolves to Θ(𝑛 log𝑛) expected time

 Running time can be improved to Θ(𝑛 log 𝑛) worst-case by pre-sorting 
coordinates

 Recurrence inequality for height

ℎ 1 = 0

ℎ 𝑛 ≤ ℎ
𝑛

2
+ 1

 resolves to 𝑂 log 𝑛 , specifically log 𝑛



kd-tree Dictionary Operations

 Search as in binary search tree using indicated  coordinate

 Insert first search, insert as new leaf

 Delete first search, remove leaf and  any parent with one child

 Problem

 kd-tree do not handle insertion/delection well

 after insert or delete, split might no longer be at exact median

 height is no longer guaranteed to be 𝑂(log 𝑛)

 remedy

 allow a certain imbalance

 re-building the entire tree when it becomes too unbalanced

 no details 

 but rangeSearch will be slower



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

 Every node is associated with a region

 range search is similar to quadtrees

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

ℛ2

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children 

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it



kd-tree Range Search
kdTree::RangeSearch(𝑟 ← root, 𝐴)

𝑟 : root of kd-tree, 𝐴: query rectangle

𝑅 ← region associated with node 𝑟

if 𝑅 ⊆ 𝐴 then

report all points below 𝑟

return

if 𝑅 ∩ 𝐴 = ∅ then return

if 𝑟 is a leaf then

𝑝 ← point stored at 𝑟

if 𝑝 ∈ 𝐴 return 𝑝

else return

for each child 𝑣 of 𝑟 do

kdTree::RangeSearch(𝑣, 𝐴)

 We assume that each node stores its associated region

 To save space, we could instead pass the region as a parameter and compute 
the region for each child using the splitting line



kd-tree: Range Search Complexity
 We visit blue and red nodes and also green nodes

 at each blue, red and topmost green node do a constant amount of work

 for each topmost green node 𝑣, report points stored at leaves in the 
subtree rooted at 𝑣

 each node has 2 children → number of internal nodes is less than 
number of leaves for any subtree

 at most 𝑠 leaves over all green subtrees, at most 2𝑠 nodes over all 
green subtrees, 𝑂(𝑠) work to report points stored in green subtrees

 topmost green nodes + red nodes ≤ 2 ∙ blue nodes

 each topmost green and red node has a blue parent

 for running time, enough to count blue nodes and add 𝑂 𝑠

 Let 𝑄(𝑛) is the number of blue nodes visited

 neither  𝑅 ∩ 𝐴 = ∅ nor 𝑅 ⊆ 𝐴

 these are regions that intersect 𝐴 but not completely inside 𝐴

 Can show that 𝑄(𝑛) satisfies 𝑄 𝑛 ≤ 2𝑄
𝑛

4
+ 𝑂 1

 resolves to 𝑄(𝑛) ∈ 𝑂( 𝑛 )

 Therefore, running time of range search is 𝑂(𝑠 + 𝑛 )



kd-tree: Range Search Complexity

 search rectangle 𝐴

 𝑄 𝑛 = # regions intersecting 𝐴 but  not 
completely inside 𝐴

 𝑄 𝑛 ≤ # regions intersecting

+ # regions intersecting

+ # regions intersecting

+ # regions intersecting

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

 Will look at # regions intersecting

 Other cases are handled similarly



kd-tree: Range Search Complexity

 𝑄𝑥 𝑛 = # regions intersected by   , if  
tree root split by 𝑥 coordinate  

 𝑄𝑥 𝑛 = 1 + 𝑄𝑦 𝑛

2

 1 for the root region 𝑅

 root region is split in 2 by vertical line

 I can intersect only one of these regions

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑄𝑦
𝑛

2



kd-tree: Range Search Complexity

 𝑄𝑥 𝑛 = # regions intersected by   , if  
tree root split by 𝑥 coordinate  

 𝑄𝑥 𝑛 = 1 + 𝑄𝑦 𝑛

2

 1 for the root region

 root region is split in 2 by vertical line

 I can intersect only one of these regions

 Next,   𝑄𝑦 𝑛

2
= 1 + 2𝑄𝑥 𝑛

4

 1 for the root region

 root region is split in 2 by horizontal line

 I can intersect both of these regions

 Combining,  get recurrence 𝑄𝑥 𝑛 = 2 + 2𝑄𝑥 𝑛

4

 Resolves to 𝑄𝑥(𝑛) ∈ 𝑂( 𝑛 )

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5



kd-tree: Higher Dimensions

 kd-trees for 𝑑-dimensional space

 at depth 0 (the root) partition is based on the 1st coordinate

 at depth 1 partition is based on the 2nd coordinate

 …

 at depth 𝑑 − 1 the partition is based on the last coordinate

 at depth 𝑑 start all over again, partitioning on 1st coordinate

 Storage 𝑂 𝑛

 Height 𝑂(log 𝑛)

 Construction time 𝑂(𝑛log𝑛)

 Range query time 𝑂(𝑠 + 𝑛1−
1

𝑑 )

 assumes that 𝑑 is a constant



Outline

 Range-Searching in Dictionaries for Points

 Range Search 

 Multi-Dimensional Data

 Quadtrees

 kd-Trees  

 Range Trees  

 Conclusion



Towards Range Trees

 Quadtrees and kd-trees
 intuitive and simple

 but both may be slow for range searches

 quadtrees are also potentially wasteful in space

 Consider BST/AVL trees
 efficient for one-dimensional dictionaries, if balanced

 range search is also efficient

 can we use ideas from BST/AVL trees for multi dimensional dictionaries?

 First let us consider range search in BST



BST::RangeSearch-recursive(𝑇,28,43)

28 43

36

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

BST Range Search example

5252

74

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query



28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

36

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

52

36 74

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query



28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

74

9

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query



28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9

74

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query



28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

74

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query



28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22

74

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query



28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

74

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query



28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

4242

74

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query



28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

4242

39

74

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query



28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

4242

39

37 41

74

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query



28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

4242

39

37 41

74

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query



28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

4242

39

37 41

74

52

46

49

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query



BST Range Search

BST::RangeSearch-recursive(𝑟 ← 𝑟𝑜𝑜𝑡, 𝑘1, 𝑘2)

𝑟:  root of a binary search tree, 𝑘1, 𝑘2: search keys  

Returns keys in subtree at 𝑟 that are in range [𝑘1, 𝑘2]

if 𝑟 = 𝑁𝐼𝐿 then return

if 𝑘1 ≤ 𝑟. 𝑘𝑒𝑦 ≤ 𝑘2 then

𝐿 ← BST::RangeSearch-recursive( 𝑟. 𝑙𝑒𝑓𝑡, 𝑘1, 𝑘2)

𝑅 ← BST::RangeSearch-recursive(𝑙 . 𝑟𝑖𝑔ℎ𝑡, 𝑘1, 𝑘2)

return 𝐿 ∪ {𝑟. 𝑘𝑒𝑦} ∪ 𝑅

if 𝑟. 𝑘𝑒𝑦 < 𝑘1 then

return BST::RangeSearch-recusive(𝑟. 𝑟𝑖𝑔ℎ𝑡, 𝑘1, 𝑘2)

if 𝑟. 𝑘𝑒𝑦 > 𝑘2 then

return BST-RangeSearch-recursive(𝑟. 𝑙𝑒𝑓𝑡, 𝑘1, 𝑘2)

 Keys returned in sorted order



Modified BST Range Search

 Search for left boundary 𝑘1 : this gives path P1 

 Search for right boundary 𝑘2 : this gives path P2

 Boundary (blue nodes) are exactly all the nodes on paths P1 and P2

 Nodes are partitioned into three groups: boundary, outside, inside

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

52

36

15

9 27

22 35

4242

39

37 41

74

46

49

28 43



Modified BST Range Search

 Boundary nodes: nodes in P1 and P2

 check if boundary nodes are in the search range

 Outside nodes: nodes that are left of P1 or right of P2

 outside nodes are not in the search range

 range search is never called on an outside node  

 Inside nodes: nodes that are right of P1 and left of P2

 we will stop the search at the topmost inside node

 all descendants of such node are in the range, just report them without search

 this is not more efficient for BST range search, but will be efficient when we 
move to 2D search in range trees



Modified BST Range Search Analysis
 Assume balanced BST

 Running time consists of

1. search for path P1

 𝑂(log𝑛)

2. search for path P2 is 𝑂 log 𝑛

 𝑂(log𝑛)

3. check if boundary nodes in the range

 𝑂(1) at each boundary node, there are 𝑂(log𝑛) of them, 𝑂(log 𝑛) total time

4. spend 𝑂(1) at each topmost inside node

 since each topmost inside node is a child of boundary node, there are at 
most 𝑂(log 𝑛) topmost inside nodes, so total time 𝑂(log 𝑛)

5. report descendants in subtrees of all topmost inside nodes

 topmost nodes are disjoint, so #descendants for inside topmost nodes is at 
most 𝑠, output size

෍

topmost inside
node 𝑣

#descendants of 𝑣 ≤ 𝑠

 Total time 𝑂(𝑠 + log𝑛)



How to Find Top Inside Node
 𝑣 is a top inside node if

 𝑣 is not is in 𝑃1or 𝑃2

 parent of 𝑣 is in 𝑃1or 𝑃2 (but not both)

 if parent is in 𝑃1, then 𝑣 is right child

 if parent is in 𝑃2, then 𝑣 is left child

𝑣

𝑤

𝑘𝑒𝑦 𝑤 ≤ 𝑘2

𝑢
𝑘1 < 𝑘𝑒𝑦 𝑢 < 𝑘2

everything < 𝑘𝑒𝑦 𝑤 < 𝑘2𝑘1 <

 Thus for each top inside node can report all descendants, no need for search

 BST range search does not become not faster overall, but top inside nodes 
are important for 2𝑑 range search efficiency

 also important if need to just count the number of points in the search range

𝑘𝑒𝑦 𝑢 <



Modified BST Range Search Summary

 Inside node (which is not a topmost inside) is in a subtree of some topmost inside node 

𝑇
 Search for k1: this gives left boundary path P1 

 Search for k2: this gives right boundary path P2

 Find all topmost inside nodes

 not in P1 or P2

 left children of nodes in P2

 right children of nodes in P1

 go over all topmost inside nodes and report all nodes in their subtree

 Set of inside nodes = union disjoint subtrees rooted at topmost inside nodes

 To output nodes in the search range

 test each node in P1 , P2 and report if in range



2D Range Tree Motivation
𝟏𝟎, 12

𝟒, 4 𝟏𝟒, 9

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟐, 14

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

 Have a set of 2D points
 𝑆 = { 1,5 , 2,7 , 3,1 , 4,4 , 5,13 , 6,15 7,11 , 8,10 , 9,6 , 10,12 , 11,8 , 12,14 , 13,2 , 14,9 , 15,16 , (16,3)}

 Example of 2D range search 

 BST-RangeSearch(𝑇, 5, 14, 5, 9)

 find all points with 5 ≤ 𝑥 ≤ 14 and 5 ≤ 𝑦 ≤ 9

 Construct BST with 𝑥-coordinate key

 recall that points are in general positon, so all 𝑥-keys are distinct

 for any  (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in our set of points, 𝑥1 ≠ 𝑥2

 can search efficiently based only on 𝑥-coordinate



2D Range Tree Motivation
𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

 could be very inefficient

 for example, |𝐴| can be, say Θ 𝑛 and |𝐵| could be 𝑂 1

 𝑂(𝑛), as bad as exhaustive search and worse than kd-trees search, 𝑂(|𝐵| + 𝑛 )

 Consider 2𝐷 range search BST-RangeSearch(𝑇, 5, 14, 5, 9)

 First perform BST-RangeSearch 𝑇, 5, 14

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14

𝟖, 10

𝟏𝟐, 14

topmost inside nodes

 let 𝐴 be the set of nodes BST-RangeSearch(𝑇, 5, 14) returns

 𝐴 = { 10,12 , 6,15 , 5,13 , 14,9 , 8,10 , 7,11 , 9,6 , 12,14 , 11,8 , (13,2)}

 let 𝐵 be the set of nodes BST-RangeSearch(𝑇, 5, 14, 5, 9) should return

 𝐵 ⊆ 𝐴

 Need to go over all nodes in 𝐴 and check if their 𝑦-coordinate is in valid range, 𝑂(|𝐴|)

{ 10,12 , 6,15 , 5,13 , 14,9 , 8,10 , 7,11 , 9,6 , 12,14 , 11,8 , (13,2)}



2D Range Tree Motivation

 Next
 for boundary nodes, check if both 𝑥 and 𝑦 coordinates are in the range, takes 𝑂(log 𝑛)

time as there are 𝑂(log 𝑛) boundary nodes

 inside nodes are stored in 𝑂(log 𝑛) subtrees, with a topmost inside node  as a root of 
each subtree

𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14

𝟖, 10

𝟏𝟐, 14

topmost inside nodes

 Consider 2𝐷 range search BST-RangeSearch(𝑇, 5, 14, 5, 9)

 First perform only partial BST-RangeSearch 𝑇, 5, 14
 find boundary and topmost inside nodes, takes 𝑂(log 𝑛) time

 if we could search these subtrees, time would be very efficient

 however these subtrees do not support efficient search by 𝑦 coordinate



2D Range Tree Motivation2D Range Tree

11, 𝟖

12, 𝟏𝟒13, 𝟐

 Need to search subtrees by 𝑦-coordinate, but they are 𝑥-coordinate based

 Brute-force solution
 create an associate balanced BST tree for each node 𝑣

 stores the same items as the main (primary) subtree rooted at node 𝑣

 but key is 𝑦-coordinate 

𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14

𝟖, 10

𝟏𝟐, 14

8, 𝟏𝟎

7, 𝟏𝟏9, 𝟔



Range Tree in ‘Full Glory’

11, 𝟖

12, 𝟏𝟒13, 𝟐

𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14

𝟖, 10

𝟏𝟐, 14

8, 𝟏𝟎

7, 𝟏𝟏9, 𝟔

Primary tree

3, 𝟏

4, 𝟒

9, 𝟔 6, 𝟏𝟓7, 𝟏𝟏

8, 𝟏𝟎

1, 𝟓 5, 𝟏𝟑

2, 𝟕

associated tree for 
node (12,14)

associated tree for 
node (8,10)

associated tree for node (4, 4)

𝟏, 5

associated tree for 
node (1, 5)



2-dimensional Range Trees Full Definition

 Points 𝑆 = 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , 𝑥𝑛−1, 𝑦𝑛−1
 Range tree is a tree of trees (a multi-level data structure)

 Primary structure

 balanced BST 𝑇 storing 𝑆 and uses 𝑥-coordinates as keys

 assume T is balanced, so height is 𝑂(log𝑛)

 Each node 𝑣 of 𝑇 stores an associated tree 𝑇(𝑣),  which is a balanced BST

Primary tree 𝑇
𝟏𝟎, 12

𝟒, 4 𝟏𝟒, 9

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟐, 14

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝑇(12,14)

11, 𝟖

12, 𝟏𝟒13, 𝟐

 let 𝑆(𝑣) be all descendants of 𝑣 in 𝑇, including 𝑣

 𝑇(𝑣) stores 𝑆(𝑣) in BST, using 𝑦-coordinates as key

 note that 𝑣 is not necessarily the root of 𝑇(𝑣)



Range search in 2D Range Tree Overview

 RangeTree::RangeSearch 𝑇, 𝑥1, 𝑥2, 𝑦1, 𝑦2
 RangeTree::RangeSearch(𝑇, 5, 14, 5, 9)

1. Perform modified BST-RangeSearch(𝑇, 5, 14)

 find boundary and topmost inside nodes, but do not go through the inside subtrees 

 modified version takes 𝑂(log𝑛) time

 does not visit all the nodes in valid range for BST-RangeSearch 𝑇, 5, 14

3. For every topmost inside node 𝑣,  search in associated tree BST::RangeSearch 𝑇(𝑣), 5, 9

2. Check if boundary nodes have valid 𝑥-coordinate and valid 𝑦-coordinate


𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14

𝟖, 10

𝟏𝟐, 14

topmost inside nodes









Range Tree Range Search Example Finished

 For every topmost inside node 𝑣,  search in associated tree BST-RangeSearch 𝑇(𝑣), 5, 9

𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14𝟏𝟐, 14






𝟖, 10

 RangeTree::RangeSearch(𝑇, 5, 14, 5, 9)

BST-rangeSearch(𝑇(8,10), 5,9) BST-RangeSearch(𝑇(12,14), 5,9)

8, 𝟏𝟎

7, 𝟏𝟏9, 𝟔

8, 𝟏𝟎

9, 𝟔


11, 𝟖

12, 𝟏𝟒13, 𝟐

11, 𝟖

13, 𝟐 12, 𝟏𝟒
 

7, 𝟏𝟏



Range Tree Space Analysis

 Space for all associated trees is

 Primary tree 𝑇 uses 𝑂(𝑛) space

 For each 𝑣, associated tree 𝑇(𝑣) uses 
𝑂(|𝑇(𝑣)|) space

𝑣

𝑣

𝑣

𝑣

𝑣

𝑣

෍

𝑣∈𝑇

𝑇 𝑣 =

= ෍

𝑣∈𝑇

#of ancestors of 𝑣

= 𝑐𝑛 log 𝑛≤ ෍

𝑣∈𝑇

𝑐log 𝑛

≤ 𝑐log 𝑛

= + + + + +

in how many associate 
trees no  appears?

#of ancestors of 𝑣

𝑇

+ + + + +

 Space is 𝑂(𝑛 log 𝑛)
 in the worst case, have 𝑛/2 leaves at the last level, and   

space needed is Θ(𝑛 log 𝑛)



Range Trees: Dictionary Operations

 Delete

 analogous to insertion

 Problem 

 want binary search trees to be balanced

 if we use AVL-trees, it makes insert/delete very slow 

 rotation at 𝑣 changes 𝑆(𝑣) and hence requires re-build of 𝑇(𝑣)

 instead of rotations, can allow certain imbalance, rebuild 
entire subtree if violated

 no details

 Search(𝑥, 𝑦)

 search by 𝑥 coordinate in the primary tree 𝑇

 Insert(𝑥, 𝑦)

 first, insert point by 𝑥-coordinate into the primary tree 𝑇

 then walk up to root and insert point by 𝑦-coordinate in all 𝑇(𝑣) of 
nodes 𝑣 on path to root



Range Trees: Range Search Runtime
𝑇

 Find boundary nodes in the primary tree 
and check if keys are in the range

 𝑂(log𝑛)

 Find topmost inside nodes in primary tree

 𝑂(log 𝑛)

topmost inside 
nodes

inside subtrees do not have any 
nodes in common

 For each topmost inside node 𝑣, perform 
range search for 𝑦-range in associate tree

 𝑂(log 𝑛) topmost inside nodes

 running time for one search is 𝑂(log 𝑛 + 𝑠𝑣)

෍

topmost inside
node 𝑣

𝑐(log 𝑛 + 𝑠𝑣) + ෍

topmost inside
node 𝑣

𝑐𝑠𝑣= ෍

topmost inside
node 𝑣

𝑐log 𝑛

𝑂(log2𝑛) ≤ 𝑐𝑠

 Time for range search in range tree: 𝑂(𝑠 + log2𝑛)
 can make this even more efficient, but this is beyond the scope of the course

 let 𝑠𝑣 be #items returned for the subtree of topmost node 𝑣



Range Trees: Higher Dimensions

 Range trees can be generalized to d -dimensional space
 space                         𝑂(𝑛 (log 𝑛)𝑑−1)

 construction time 𝑂(𝑛 (log 𝑛)𝑑)

 range search time 𝑂(𝑠 + (log 𝑛)𝑑)

 Note: 𝑑 is considered to be a constant

 Space-time tradeoff compared to kd trees



Outline

 Range-Searching in Dictionaries for Points

 Range Search 

 Multi-Dimensional Data

 Quadtrees

 kd-Trees  

 Range Trees  

 Conclusion



Range Search Data Structures Summary
 Quadtrees
 simple,  easy to implement insert/delete (i.e. dynamic set of points)

 work well only if points evenly distributed

 wastes space for higher dimensions

 convention: points on split lines belong to the right/top side

 kd-trees
 linear space

 range search is 𝑂(𝑠 + 𝑛)

 inserts/deletes destroy balance and range search time

 fix with occasional rebuilt

 convention: points on split lines belong to the right/top side

 Range trees
 fastest range search 𝑂(𝑠 + log2𝑛)

 wastes some space

 insert and delete destroy balance, but can fix this with occasional rebuilt


