
CS 240 – Data Structures and Data Management

Module 8: Range-Searching in Dictionaries for Points

A. Hunt and O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

Outline

 Range-Searching in Dictionaries for Points

 Range Search

 Multi-Dimensional Data

 Quadtrees

 kd-Trees

 Range Trees

 Conclusion

Outline

 Range-Searching in Dictionaries for Points

 Range Search

 Multi-Dimensional Data

 Quadtrees

 kd-Trees

 Range Trees

 Conclusion

Range Searches

 search(𝑘) looks for one specific item

 New operation RangeSearch (𝑥, 𝑥′)

 look for all items that fall within given range

 input a range, i.e. interval 𝑙 = (𝑥, 𝑥′)

 may have open or closed ends

 want to report all KVPs in the dictionary with 𝑘 ∈ 𝑙

 example

5 10 11 17 18 33 45 51 55 77

RangeSearch (17,45] should return {18, 33, 45}

 Let 𝑠 be the output-size, i.e. the number of items in the range

 Need Ω(𝑠) time just to report the items in the range

 𝑠 can be anything between 0 and 𝑛

 Running time depends both on 𝑠 and 𝑛

 keep 𝑠 as a parameter when analyzing runtime

 𝑂(log 𝑛 + 𝑠) time would be the best possible with comparison based search

5 10 11 17 18 33 45 51 55 77

Range Search in Existing Dictionary Realizations

 Unsorted list/array/hash table
 range search requires Ω 𝑛 time

 must check for each item explicitly if it is in the range

 Sorted array
 range search can be done in 𝑂 log𝑛 + 𝑠 time

5 10 11 17 18 33 45 51 55 77

 RangeSearch (16,50)

 use binary search to find 𝑖 s.t. 𝑥 is at (or would be at) 𝐴[𝑖]

𝑖

 use binary search to find 𝑖′ s.t. 𝑥′ is at (or would be at) 𝐴[𝑖′]

 Report 𝐴[𝑖] and 𝐴 𝑖′ if they are in the range

 BST
 can do range search in 𝑂(ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑠) time, will see in detail later

𝑖′

5 10 11 17 18 33 45 51 55 77

 report all items in 𝐴[𝑖 + 1… 𝑖′ − 1]

Outline

 Range-Searching in Dictionaries for Points

 Range Search Query

 Multi-Dimensional Data

 Quadtrees

 kd-Trees

 Range Trees

 Conclusion

Multi-dimensional Data

 Data with multiple aspects of interest

 laptops: price, screen size, processor speed, etc.

 employees: name, age, salary, …

 Dictionary for multi-dimensional data

 collection of 𝑑-dimensional items (or points)

 each item has 𝑑 aspects (coordinates): (𝑥0, 𝑥1,· · · , 𝑥𝑑−1)

 operations: insert, delete, search, range search

 Range search

 example: laptops with

1) 11 inches < screen size < 13 inches

2) 8GB < RAM < 16 GB

3) 1,500 CAD < price < 2,000 CAD

 We focus on 𝑑 = 2, i.e. points in Euclidean plane

Multi-Dimensional Range Search

 (Orthogonal) 𝑑-dimensional range search
 given a query rectangle 𝐴, find all points that lie within 𝐴

range-search query
(1350 ≤ 𝑥 < 1550, 700 ≤ 𝑦 < 1100)

800

600

1200

1000

1200 1300 1400 1500 1600 1700 1800

price (CAD)

processor speed (MHz)

Multi-Dimensional Range Search
 Options for implementing 𝑑 dimensional dictionaries

 Reduce to one-dimensional dictionary

 combine 𝑑-dimensional key into one dimensional key
 i.e. 𝑥, 𝑦 → 𝑥 + 𝑦 ∙ 𝑛2

 problem: range search on one aspect is not straightforward

 Use several dictionaries, one for each dimension
 problem: wastes space, inefficient search

 Example

 𝑂(𝑛 log𝑛) time to consolidate results of both
searches, with AVL trees

 Total time is 𝑂(𝑛 log 𝑛), worse than exhaustive search
 far from 𝑂(𝑠 + log 𝑛), especially since 𝑠 = 0

 Better idea
 design new data structures specifically for points

 will assume points are in general position: no two 𝑥-coordinates or
𝑦-coordinates are the same

 simplifies presentation, data structures can be generalized

 𝑛/2 points retrieved in each direction

Multi-Dimensional Range Search

 Partition trees
 organize space to facilitate efficient multidimensional search

 internal nodes are associated with spatial regions

 actual dictionary points stored only at leaves

 quadtrees, kd-trees

 Multi-dimensional range trees
 organize dictionary points to support efficient 𝑛𝐷 search with a variant of BST

search

 both internal and leaf nodes store points, similar to one dimensional BST

Outline

 Range-Searching in Dictionaries for Points

 Range Search Query

 Multi-Dimensional Data

 Quadtrees

 kd-Trees

 Range Trees

 Conclusion

Quadtrees

𝑝1

0 16

16

𝑝9
𝑝3

𝑝5

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

 Have a set 𝑆 of 𝑛 points in the plane

 Need bounding box 𝑅

 width/height of 𝑅 is a power of 2

 smallest square[0, 2𝑘) × [0, 2𝑘) containing
all points

 this also simplifies insert/delete

 find 𝑅 by computing the maximum 𝑥 and 𝑦
values in set 𝑆

 Quadtree is a hierarchy (tree) of regions

 Higher levels responsible for larger regions

 Lower levels responsible for smaller regions

 Leaves responsible for regions small enough to
store one point

 Whenever possible, search rules out regions at
higher level of hierarchy, achieving efficiency

Quadtree Construction Example

𝑝1

0 16

16

𝑝9
𝑝3

𝑝5

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

NENW

SW SE

 Convention: points on split lines
belong to region on the right (or top)

??

 The root corresponds to the whole
square

 Split the square into 4 equal regions

𝑝1

0 16

16

𝑝9
𝑝3

𝑝5

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8

empty subtrees

 keep subdividing regions (recursively)
into smaller region until each region
has one point

Quadtree Construction Example

Quadtree Construction Example

𝑝1

0

16

𝑝9
𝑝3

𝑝5

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 𝑝6 𝑝0 𝑝2 𝑝7

 keep subdividing regions (recursively)
into smaller region until each region
has one point

Quadtree Construction Example

𝑝1

0

16

𝑝3

𝑝5

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 𝑝6 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

 keep subdividing regions (recursively)
into smaller region until each region
has one point

𝑝9

Quadtree: Omit Empty Subtrees

𝑝1

0

16

𝑝9
𝑝3

𝑝5

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

0,4 × 8,12 𝑝8 𝑝6 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 𝑝1

NE NW SW SE

SW SE

NE NW SE

NE NW SW SE

 Easier for humans

 omit empty subtrees, label edges

Quadtree Building Summary
 Have 𝑛 points 𝑆 = 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , 𝑥𝑛−1, 𝑦𝑛−1

 all points are within a square 𝑅

 To build quadtree on 𝑆

 root 𝑟 corresponds to 𝑅

 if 𝑅 contains 0 (or 1) point

 then root 𝑟 is empty (or a leaf that stores 1 point)

 else partition 𝑅 into four equal subsquares (quadrants)

 𝑅𝑁𝐸 , 𝑅𝑁𝑊, 𝑅𝑆𝑊, 𝑅𝑆𝐸
 for each region, root has four subtrees 𝑣𝑁𝐸 , 𝑣𝑁𝑊 , 𝑣𝑆𝑊 , 𝑣𝑆𝐸

 recursively repeat this process at each nonleaf child

 convention: points on split lines belong to region on the right (or top)

Quadtree Search

𝑝1

16

𝑝9
𝑝3

𝑝5

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 𝑝6 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

 Analogous to trie or BST

 Three possibilities for where search ends

1. leaf storing point we search for (found)

2. leaf storing point different from search point (not found)

3. empty subtree (not found)

 Example: search(5,7)

(5,7)
8

(not found)

 Search is efficient if quadtree has small height

Quadtree Insert

 First perform search

 Two cases

1. search finds a leaf storing one point

 example: insert(5,7)

𝑝1

0

16

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

16

(5,7)

8

8

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 𝑝6 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝5

Quadtree Insert

𝑝1

0

16

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

16

(5,7)

8

8

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 𝑝6 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝5

 First perform search

 Two cases

1. search finds a leaf storing one point

 example: insert(5,7)

 repeatedly split the leaf while there are two points in one region

Quadtree Insert

 First perform search

 Two cases

1. search finds a leaf storing one point

 example: insert(5,7)

 repeatedly split the leaf while there are two points in one region

𝑝1

0

16

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

16

(5,7)

8

8

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1 (5,7) ∅ 𝑝6∅

4,8 × 4,8𝑝5

Quadtree Insert

 First perform search

 Two cases

1. search finds a leaf storing one point

2. search finds an empty subtree

 example: insert (5,13)

𝑝1

0

16

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

16

(5,13)

8

8

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 𝑝6 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝5

Quadtree Insert

 First perform search

 Two cases

1. search finds a leaf storing one point

2. search finds an empty subtree

 example: insert(5,13)

 expand empty subtree into a leaf storing insertion point

𝑝1

0

16

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6

16

(5,13)

8

8

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

(5,13) ∅ 0,4 × 8,12 𝑝8 𝑝6 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝5

Quadtree Insert

 If we insert point outside the bounding box, no need to rebuild the
tree due to bounding box being [0, 2𝑘) × [0, 2𝑘)

0

𝑝7𝑝2

𝑝0
𝑝6

8

8

0,8 × 0,8

𝑝6 𝑝0 𝑝2 𝑝7

Quadtree Insert

0

𝑝7𝑝2

𝑝0
𝑝6

8

8

𝑝4

16

16

0,16 × 0,16

∅ 0,8 × 0,8

𝑝6 𝑝0 𝑝2 𝑝7

𝑝4 ∅

 If we insert point outside the bounding box, no need to rebuild the
tree due to bounding box being [0, 2𝑘) × [0, 2𝑘)

Quadtree Delete

 search for leaf containing the point

 example: delete(𝑝6)

𝑝1

16

𝑝9
𝑝3

𝑝5

𝑝4

𝑝8

𝑝6

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 𝑝6 ∅ 𝑝2 ∅

𝑝9 𝑝3 ∅ 𝑝1

8

𝑝6

𝑝2

 replace the leaf by empty subtree

Quadtree Delete

 search for leaf containing the point

 example: delete(𝑝6)

 replace the leaf by empty subtree

𝑝1

16

𝑝9
𝑝3

𝑝5

𝑝4

𝑝8

𝑝6

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 ∅ ∅ ∅

𝑝9 𝑝3 ∅ 𝑝1

8

𝑝6

𝑝2

𝑝2

Quadtree Delete

 search for leaf containing the point

 example: delete(𝑝6)

 replace the leaf by empty subtree

 if parent has only one child, and the child is a leaf

𝑝1

16

𝑝9
𝑝3

𝑝4

𝑝8

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8

𝑝9 𝑝3 ∅ 𝑝1

8
∅ ∅ 𝑝2

𝑝5

 delete parent, make the only leaf child to be a child of its grandparent

 or quadtree root if no grandparent

∅

𝑝2

Quadtree Delete

𝑝1

16

𝑝9
𝑝3

𝑝4

𝑝8

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 𝑝2

∅ ∅ 0,4 × 8,12 𝑝8

𝑝9 𝑝3 ∅ 𝑝1

8
𝑝5

𝑝2

 search for leaf containing the point

 example: delete(𝑝6)

 replace the leaf by empty subtree

 if parent has only one child, and the child is a leaf
 delete parent, make the only leaf child to be a child of its grandparent

 if deleted parent, may cause a series of deletes going up the tree

Quadtree Delete

𝑝1

16

𝑝9
𝑝3

𝑝4

𝑝8

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 𝑝2

∅ ∅ 0,4 × 8,12 𝑝8

𝑝9 𝑝3 ∅ 𝑝1

8
𝑝5

𝑝2

 Cannot delete if parent has a single child, but non-leaf child

 example: delete(𝑝8)

𝑝8

Quadtree Delete

𝑝1

16

𝑝9
𝑝3

𝑝4

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 𝑝2

∅ ∅ 0,4 × 8,12

𝑝9 𝑝3 ∅ 𝑝1

8
𝑝5

𝑝2

 Cannot delete if parent has a single child, but non-leaf child

 non-leaf child corresponds to a region storing more than 1 point

 example: delete(𝑝8)

∅

Quadtree Analysis

 Search, insert, delete depend on quadtree height

 What is the height of a quadtree?

 can have very large height for bad distributions of points

 example with just three points

height = 1234

 can make height arbitrarily large by moving red points closer together

Quadtree Analysis
 spread factor of points 𝑆

𝛽(𝑆) =
𝐿

𝑑𝑚𝑖𝑛

 𝐿 = side length of 𝑅

 𝑑𝑚𝑖𝑛 is smallest distance between two points in 𝑆

𝐿

2ℎ
𝟐
𝑳

𝟐𝒉

 diagonal in smallest region is 2
𝐿

2ℎ

 smallest region contains one red point ⇒ 2
𝐿

2ℎ
< 𝑑𝑚𝑖𝑛

 rearrange: 2
𝐿

𝑑𝑚𝑖𝑛

< 2ℎ

 take log of both sides: ℎ > log 2
𝐿

𝑑𝑚𝑖𝑛
= log 2𝛽(𝑆)

 Worst case: height ℎ ∈ Ω(log 𝛽(𝑆))

 until smallest region diagonal is < 𝑑𝑚𝑖𝑛, 2 red points are in the same region

 if height is ℎ, then we do ℎ rounds of subdivisions

 after ℎ subdivisions, smallest regions have side length
𝐿

2ℎ

Quadtree Analysis

 spread factor of points 𝑆

𝛽(𝑆) =
𝐿

𝑑𝑚𝑖𝑛

 𝐿 = side length of 𝑅

 𝑑𝑚𝑖𝑛 is smallest distance between two
points in 𝑆

 In the worst case, height ℎ ∈ Ω(log𝛽(𝑆))

 However, height can be much better even if the spread is large

Quadtree Analysis
 spread factor of points 𝑆

𝛽(𝑆) =
𝐿

𝑑𝑚𝑖𝑛

 𝐿 = side length of 𝑅

 𝑑𝑚𝑖𝑛 is smallest distance between two points in 𝑆

 In the worst case, height ℎ ∈ Ω(log𝛽(𝑆))

 In any case, height ℎ ∈ O(log 𝛽(𝑆))
𝐿

2ℎ−1
𝟐

𝑳

𝟐𝒉−𝟏

≤ 2
𝐿

2ℎ−1
𝑑𝑚𝑖𝑛 ≤ 𝑑(𝑝, 𝑞)

2ℎ−1 ≤ 2
𝐿

𝑑𝑚𝑖𝑛
⇒ ℎ ≤ 1 + log(2𝛽(𝑆))= 2 𝛽(𝑆)

 let 𝑣 be an internal node at depth ℎ − 1

 there are at lest 2 points 𝑝, 𝑞 inside its region

 maximum distance between 2 points in such region is 2
𝐿

2ℎ−1

 𝑑𝑚𝑖𝑛 ≤ 𝑑(𝑝, 𝑞)

𝑝

𝑞

 the corresponding region has side length
𝐿

2ℎ−1

Quadtree Analysis

 spread factor of points 𝑆

𝛽(𝑆) =
𝐿

𝑑𝑚𝑖𝑛

 𝐿 = side length of 𝑅

 𝑑𝑚𝑖𝑛 is smallest distance between two
points in 𝑆

 In the worst case, height ℎ ∈ Ω(log𝛽(𝑆))

 In any case, height ℎ ∈ O(log 𝛽(𝑆))

 to guarantee good performance, log𝛽(𝑆) should be much smaller than 𝑛

 Complexity to build initial tree: Θ(𝑛ℎ) worst-case

 expensive if large height (as compared to the number of points)

Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

160

𝑝10

∅ ∅ 𝑝10 𝑝6

Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9

𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

Quadtree Range Search Example

0,16 × 0,16

𝑝4 𝑝50,8 × 8,16 0,8 × 0,8

∅ ∅ 0,4 × 8,12 𝑝8 4,8 × 4,8 𝑝0 𝑝2 𝑝7

𝑝9 𝑝3 ∅ 𝑝1

𝑝1

𝑝9
𝑝3

𝑝7𝑝2

𝑝0

𝑝4

𝑝8

𝑝6
𝑝5

𝑝10

∅ ∅ 𝑝10 𝑝6

160

 Query rectangle A = [3 ≤ 𝑥 < 13, 3 ≤ 𝑦 < 7]

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (inside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

Quadtree Range Search
Qtree::RangeSearch(𝑟 ← 𝑟𝑜𝑜𝑡, 𝐴)

𝑟 : quadtree root, 𝐴: query rectangle

let 𝑅 be the region associated with 𝑟

if 𝑅 ⊆ 𝐴 then //inside node

report all points below 𝑟

return
if 𝑅 ∩ 𝐴 = ∅ then //outside node

return
// boundary node, recurse if not a leaf
if 𝑟 is a leaf then // leaf, do not recurse

𝑝 ← point stored at 𝑟
if 𝑝 is in 𝐴 return 𝑝
else return

for each child 𝑣 of 𝑟 do
QTree-RangeSearch(𝑣, 𝐴)

 Code assumes each quadtree node stores the associated square

 Alternatively, these could be re-computed during search

 space-time tradeoff

RangeSearch Analysis

 Running time is number of visited nodes + output size

 No good bound on number of visited nodes

 may have to visit nearly all nodes in the worst case

 Θ(𝑛ℎ) worst-case

 this is worse than exhaustive search

 even if the range search returns empty result

 but in practice usually much faster

Quadtrees in other dimensions

 Quad-tree of 1-dimensional points

[0,32)

[0,16)

00000

0

[8,16)

1

0

[16,32)

1

0

01001

1
[12,16)

[24,32)

0
[24,28)

1

11100

1

0 1 0 1

01100 01110 11000 11010

 Same as a trie

 with splitting stopped once key is unique

points 0 9 12 14 24 26 28

base 2 00000 01001 01100 01110 11000 11010 11100

Quadtree summary

 Quadtrees easily generalize to higher dimensions
 octrees, etc.

 but rarely used beyond dimension 3

 Easy to compute and handle

 No complicated arithmetic, only divisions by 2
 bit-shift if the width/height of 𝑅 is a power of 2

 Space potentially wasteful, but good if points are well-distributed

 Variation
 stop splitting earlier and allow up to 𝑘 points in a leaf for some fixed 𝑘

Outline

 Range-Searching in Dictionaries for Points

 Range Search Query

 Multi-Dimensional Data

 Quadtrees

 kd-Trees

 Range Trees

 Conclusion

kd-tree motivation

 Quadtree can be very unbalanced

 kd-tree idea

 split into regions with equal number of points

 easier to split into two regions with equal number of points (rather
than four regions)

 can split either vertically or horizontally

 alternating vertical and horizontal splits gives range search efficiency

kd-tree example
 No need for bounding box

 Root corresponds to the whole ℛ2
𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1

ℛ2 is split into two half regions

 First find the best vertical split

𝑛

2
on one side and

𝑛

2
and points on the other

𝑥 < 𝑝8.𝑥

kd-tree example
 No need for bounding box

 Root corresponds to the whole ℛ2
𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1

ℛ2 is split into two half regions

 First find the best vertical split

𝑛

2
on one side and

𝑛

2
and points on the other

𝑥 < 𝑝8.𝑥

 Because points are in general
position, always can split in two
(equal or almost equal subsets)

 Because points are in general position, always can split in two
equal (or almost equal subsets)

 General position means no two 𝑥 or 𝑦 coordinates are the same
 Consider the points below not in general position

 Cannot divide them in two equal subsets by a vertical line

kd-tree example
 No need for bounding box

 Root corresponds to the whole ℛ2
𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1

ℛ2 is split into two half regions

 First find the best vertical split

𝑛

2
on one side and

𝑛

2
and points on the other

𝑥 < 𝑝8.𝑥

y n

kd-tree example
 Recurse on the resulting regions

 if they have more than one point

 Alternate split direction𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1 𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

 Recurse on the resulting regions

 if they have more than one point

 Alternate split direction𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1 𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

 Recurse on the resulting regions

 if they have more than one point

 Alternate split direction𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1 𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

𝑥 < 𝑝2.𝑥

 Recurse on the resulting regions

 if they have more than one point

 Alternate split direction𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1 𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

𝑥 < 𝑝2.𝑥

y n

𝑝0 𝑝2

 Recurse on the resulting regions

 if they have more than one point

 Alternate split direction𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1 𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

𝑥 < 𝑝2.𝑥

y n

𝑝0 𝑝2

𝑥 < 𝑝9.𝑦

 Recurse on the resulting regions

 if they have more than one point

 Alternate split direction𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1 𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

𝑥 < 𝑝2.𝑥

y n

𝑝0 𝑝2

𝑥 < 𝑝9.𝑥

y

𝑝3

n

𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1

𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

𝑥 < 𝑝2.𝑥

y n

𝑝0 𝑝2

𝑥 < 𝑝9.𝑥

y

𝑝3

n

𝑦 < 𝑝9.𝑦

𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1

𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

𝑥 < 𝑝2.𝑥

y n

𝑝0 𝑝2

𝑥 < 𝑝9.𝑥

y

𝑝3

n

𝑦 < 𝑝9.𝑦

y n

𝑝1 𝑝9

𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1

𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

𝑥 < 𝑝2.𝑥

y n

𝑝0 𝑝2

𝑥 < 𝑝9.𝑥

y

𝑝3

n

𝑦 < 𝑝9.𝑦

y n

𝑝1 𝑝9

𝑦 < 𝑝6.𝑦

𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1

𝑥 < 𝑝8.𝑥

y n

𝑦 < 𝑝1.𝑦

y n

kd-tree example

𝑥 < 𝑝2.𝑥

y n

𝑝0 𝑝2

𝑥 < 𝑝9.𝑥

y

𝑝3

n

𝑦 < 𝑝9.𝑦

y n

𝑝1 𝑝9

𝑦 < 𝑝6.𝑦

y n

kd-tree example

𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1

𝑥 < 𝑝8.𝑥

𝑦 < 𝑝1.𝑦

y n

𝑦 < 𝑝6.𝑦
y

𝑥 < 𝑝2.𝑥

n

𝑥 < 𝑝9.𝑥

y

𝑥 < 𝑝5.𝑥

n

𝑥 < 𝑝6.𝑥
y

𝑝0

n

𝑝2

y

𝑝3
𝑦 < 𝑝9.𝑦
y

𝑝1

n

𝑝9

y

𝑝7

n

𝑝5

n y

𝑝8

n

𝑦 < 𝑝4.𝑦
y

𝑝6

n

𝑝4

kd-tree example

𝑝4

𝑝5
𝑝7

𝑝6

𝑝2

𝑝8

𝑝9

𝑝3

𝑝0

𝑝1
𝑥 < 𝑝8.𝑥

𝑦 < 𝑝1.𝑦

y n

𝑦 < 𝑝6.𝑦

y

𝑥 < 𝑝2.𝑥

n

𝑥 < 𝑝9.𝑥

y

𝑥 < 𝑝5.𝑥

n

𝑥 < 𝑝6.𝑥

y

𝑝0

n

𝑝2

y

𝑝3 𝑦 < 𝑝9.𝑦

y

𝑝1

n

𝑝9

y

𝑝7

n

𝑝5

n y

𝑝8

n

𝑦 < 𝑝4.𝑦

y

𝑝6

n

𝑝4

Building kd-trees

 Points 𝑆 = 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , 𝑥𝑛−1, 𝑦𝑛−1
 Build kd-tree with initial 𝑥-split

 if |𝑆| ≤ 1 create a leaf and return

 else find 𝑥-coordinate in position 𝑚 =
𝑛

2
in sorted list of 𝑥 -coordinates

or partition by calling quickSelect(𝑆,
𝑛

2
)

 partition 𝑆 into 𝑆𝑥<𝑚 and 𝑆𝑥≥𝑚 by comparing the 𝑥 coordinate of a
point with 𝑚

 create left subtree recursively (splitting on 𝑦) for points 𝑆𝑥<𝑚
 create right subtree recursively (splitting on 𝑦) for points 𝑆𝑥≥𝑚
 each node keeps track of the splitting line

 Building with initial 𝑦-split symmetric

 Points on split lines belong to right/top side

kd-tree Construction Running Time

 Partition 𝑆 in Θ(𝑛) expected time with QuickSelect

 Both subtrees have ≈ 𝑛/2 points

 Sloppy recurrence

 𝑇𝑒𝑥𝑝 𝑛 = 2𝑇𝑒𝑥𝑝
𝑛

2
+ 𝑂(𝑛)

 resolves to Θ(𝑛 log𝑛) expected time

 Running time can be improved to Θ(𝑛 log 𝑛) worst-case by pre-sorting
coordinates

 Recurrence inequality for height

ℎ 1 = 0

ℎ 𝑛 ≤ ℎ
𝑛

2
+ 1

 resolves to 𝑂 log 𝑛 , specifically log 𝑛

kd-tree Dictionary Operations

 Search as in binary search tree using indicated coordinate

 Insert first search, insert as new leaf

 Delete first search, remove leaf and any parent with one child

 Problem

 kd-tree do not handle insertion/delection well

 after insert or delete, split might no longer be at exact median

 height is no longer guaranteed to be 𝑂(log 𝑛)

 remedy

 allow a certain imbalance

 re-building the entire tree when it becomes too unbalanced

 no details

 but rangeSearch will be slower

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

 Every node is associated with a region

 range search is similar to quadtrees

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

ℛ2

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

kd-tree: Range Search Example

𝑥 < 𝑝2.𝑥?
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑥 < 𝑝8.𝑥?

𝑝7

𝑦 < 𝑝1.𝑦? 𝑦 < 𝑝6.𝑦?

𝑥 < 𝑝9.𝑥? 𝑥 < 𝑝6.𝑥?

𝑦 < 𝑝9.𝑦? 𝑦 < 𝑝4.𝑦?𝑝0 𝑝2 𝑝3

𝑝1 𝑝9

𝑝8

𝑝6 𝑝4

𝑥 < 𝑝5.𝑥?

𝑝5

 Query rectangle A

 Let 𝑅 be region associated with current node, have 3 cases

1. 𝑅 ∩ 𝐴 = ∅: red (outside) node, do not search its children

2. 𝑅 ⊆ 𝐴: green (inside) node, no need to search children, report all points in 𝑅

3. 𝑅 ∩ 𝐴 ≠ ∅: blue (boundary) node, search its children (if any)

 if 𝑅 is a leaf, if it stores point inside 𝐴, report it

kd-tree Range Search
kdTree::RangeSearch(𝑟 ← root, 𝐴)

𝑟 : root of kd-tree, 𝐴: query rectangle

𝑅 ← region associated with node 𝑟

if 𝑅 ⊆ 𝐴 then

report all points below 𝑟

return

if 𝑅 ∩ 𝐴 = ∅ then return

if 𝑟 is a leaf then

𝑝 ← point stored at 𝑟

if 𝑝 ∈ 𝐴 return 𝑝

else return

for each child 𝑣 of 𝑟 do

kdTree::RangeSearch(𝑣, 𝐴)

 We assume that each node stores its associated region

 To save space, we could instead pass the region as a parameter and compute
the region for each child using the splitting line

kd-tree: Range Search Complexity
 We visit blue and red nodes and also green nodes

 at each blue, red and topmost green node do a constant amount of work

 for each topmost green node 𝑣, report points stored at leaves in the
subtree rooted at 𝑣

 each node has 2 children → number of internal nodes is less than
number of leaves for any subtree

 at most 𝑠 leaves over all green subtrees, at most 2𝑠 nodes over all
green subtrees, 𝑂(𝑠) work to report points stored in green subtrees

 topmost green nodes + red nodes ≤ 2 ∙ blue nodes

 each topmost green and red node has a blue parent

 for running time, enough to count blue nodes and add 𝑂 𝑠

 Let 𝑄(𝑛) is the number of blue nodes visited

 neither 𝑅 ∩ 𝐴 = ∅ nor 𝑅 ⊆ 𝐴

 these are regions that intersect 𝐴 but not completely inside 𝐴

 Can show that 𝑄(𝑛) satisfies 𝑄 𝑛 ≤ 2𝑄
𝑛

4
+ 𝑂 1

 resolves to 𝑄(𝑛) ∈ 𝑂(𝑛)

 Therefore, running time of range search is 𝑂(𝑠 + 𝑛)

kd-tree: Range Search Complexity

 search rectangle 𝐴

 𝑄 𝑛 = # regions intersecting 𝐴 but not
completely inside 𝐴

 𝑄 𝑛 ≤ # regions intersecting

+ # regions intersecting

+ # regions intersecting

+ # regions intersecting

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

 Will look at # regions intersecting

 Other cases are handled similarly

kd-tree: Range Search Complexity

 𝑄𝑥 𝑛 = # regions intersected by , if
tree root split by 𝑥 coordinate

 𝑄𝑥 𝑛 = 1 + 𝑄𝑦 𝑛

2

 1 for the root region 𝑅

 root region is split in 2 by vertical line

 I can intersect only one of these regions

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

𝑄𝑦
𝑛

2

kd-tree: Range Search Complexity

 𝑄𝑥 𝑛 = # regions intersected by , if
tree root split by 𝑥 coordinate

 𝑄𝑥 𝑛 = 1 + 𝑄𝑦 𝑛

2

 1 for the root region

 root region is split in 2 by vertical line

 I can intersect only one of these regions

 Next, 𝑄𝑦 𝑛

2
= 1 + 2𝑄𝑥 𝑛

4

 1 for the root region

 root region is split in 2 by horizontal line

 I can intersect both of these regions

 Combining, get recurrence 𝑄𝑥 𝑛 = 2 + 2𝑄𝑥 𝑛

4

 Resolves to 𝑄𝑥(𝑛) ∈ 𝑂(𝑛)

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝6

𝑝8

𝑝9

𝑝7
𝑝5

kd-tree: Higher Dimensions

 kd-trees for 𝑑-dimensional space

 at depth 0 (the root) partition is based on the 1st coordinate

 at depth 1 partition is based on the 2nd coordinate

 …

 at depth 𝑑 − 1 the partition is based on the last coordinate

 at depth 𝑑 start all over again, partitioning on 1st coordinate

 Storage 𝑂 𝑛

 Height 𝑂(log 𝑛)

 Construction time 𝑂(𝑛log𝑛)

 Range query time 𝑂(𝑠 + 𝑛1−
1

𝑑)

 assumes that 𝑑 is a constant

Outline

 Range-Searching in Dictionaries for Points

 Range Search

 Multi-Dimensional Data

 Quadtrees

 kd-Trees

 Range Trees

 Conclusion

Towards Range Trees

 Quadtrees and kd-trees
 intuitive and simple

 but both may be slow for range searches

 quadtrees are also potentially wasteful in space

 Consider BST/AVL trees
 efficient for one-dimensional dictionaries, if balanced

 range search is also efficient

 can we use ideas from BST/AVL trees for multi dimensional dictionaries?

 First let us consider range search in BST

BST::RangeSearch-recursive(𝑇,28,43)

28 43

36

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

BST Range Search example

5252

74

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

36

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

52

36 74

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

74

9

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9

74

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

74

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22

74

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

74

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

4242

74

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

4242

39

74

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

4242

39

37 41

74

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

4242

39

37 41

74

52

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query

28 43

BST::RangeSearch-recursive(𝑇,28,43)

BST Range Search example

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

36

15

9 27

22 35

4242

39

37 41

74

52

46

49

 blue node: recurse either to the left, or to the right, or both (according to the key value)
 boundary node, one or both subtrees may intersect range query

 red node: range search was not called on red node, but was called on its parent
 outside node, subtree does not intersect range query

 green node : all the keys in the subtree are in the range
 inside node, subtree completely inside range query

BST Range Search

BST::RangeSearch-recursive(𝑟 ← 𝑟𝑜𝑜𝑡, 𝑘1, 𝑘2)

𝑟: root of a binary search tree, 𝑘1, 𝑘2: search keys

Returns keys in subtree at 𝑟 that are in range [𝑘1, 𝑘2]

if 𝑟 = 𝑁𝐼𝐿 then return

if 𝑘1 ≤ 𝑟. 𝑘𝑒𝑦 ≤ 𝑘2 then

𝐿 ← BST::RangeSearch-recursive(𝑟. 𝑙𝑒𝑓𝑡, 𝑘1, 𝑘2)

𝑅 ← BST::RangeSearch-recursive(𝑙 . 𝑟𝑖𝑔ℎ𝑡, 𝑘1, 𝑘2)

return 𝐿 ∪ {𝑟. 𝑘𝑒𝑦} ∪ 𝑅

if 𝑟. 𝑘𝑒𝑦 < 𝑘1 then

return BST::RangeSearch-recusive(𝑟. 𝑟𝑖𝑔ℎ𝑡, 𝑘1, 𝑘2)

if 𝑟. 𝑘𝑒𝑦 > 𝑘2 then

return BST-RangeSearch-recursive(𝑟. 𝑙𝑒𝑓𝑡, 𝑘1, 𝑘2)

 Keys returned in sorted order

Modified BST Range Search

 Search for left boundary 𝑘1 : this gives path P1

 Search for right boundary 𝑘2 : this gives path P2

 Boundary (blue nodes) are exactly all the nodes on paths P1 and P2

 Nodes are partitioned into three groups: boundary, outside, inside

35

15

9 27

42

39

22 35 37 41

46

49

74

65

60 69

97

86 99

52

36

15

9 27

22 35

4242

39

37 41

74

46

49

28 43

Modified BST Range Search

 Boundary nodes: nodes in P1 and P2

 check if boundary nodes are in the search range

 Outside nodes: nodes that are left of P1 or right of P2

 outside nodes are not in the search range

 range search is never called on an outside node

 Inside nodes: nodes that are right of P1 and left of P2

 we will stop the search at the topmost inside node

 all descendants of such node are in the range, just report them without search

 this is not more efficient for BST range search, but will be efficient when we
move to 2D search in range trees

Modified BST Range Search Analysis
 Assume balanced BST

 Running time consists of

1. search for path P1

 𝑂(log𝑛)

2. search for path P2 is 𝑂 log 𝑛

 𝑂(log𝑛)

3. check if boundary nodes in the range

 𝑂(1) at each boundary node, there are 𝑂(log𝑛) of them, 𝑂(log 𝑛) total time

4. spend 𝑂(1) at each topmost inside node

 since each topmost inside node is a child of boundary node, there are at
most 𝑂(log 𝑛) topmost inside nodes, so total time 𝑂(log 𝑛)

5. report descendants in subtrees of all topmost inside nodes

 topmost nodes are disjoint, so #descendants for inside topmost nodes is at
most 𝑠, output size

topmost inside
node 𝑣

#descendants of 𝑣 ≤ 𝑠

 Total time 𝑂(𝑠 + log𝑛)

How to Find Top Inside Node
 𝑣 is a top inside node if

 𝑣 is not is in 𝑃1or 𝑃2

 parent of 𝑣 is in 𝑃1or 𝑃2 (but not both)

 if parent is in 𝑃1, then 𝑣 is right child

 if parent is in 𝑃2, then 𝑣 is left child

𝑣

𝑤

𝑘𝑒𝑦 𝑤 ≤ 𝑘2

𝑢
𝑘1 < 𝑘𝑒𝑦 𝑢 < 𝑘2

everything < 𝑘𝑒𝑦 𝑤 < 𝑘2𝑘1 <

 Thus for each top inside node can report all descendants, no need for search

 BST range search does not become not faster overall, but top inside nodes
are important for 2𝑑 range search efficiency

 also important if need to just count the number of points in the search range

𝑘𝑒𝑦 𝑢 <

Modified BST Range Search Summary

 Inside node (which is not a topmost inside) is in a subtree of some topmost inside node

𝑇
 Search for k1: this gives left boundary path P1

 Search for k2: this gives right boundary path P2

 Find all topmost inside nodes

 not in P1 or P2

 left children of nodes in P2

 right children of nodes in P1

 go over all topmost inside nodes and report all nodes in their subtree

 Set of inside nodes = union disjoint subtrees rooted at topmost inside nodes

 To output nodes in the search range

 test each node in P1 , P2 and report if in range

2D Range Tree Motivation
𝟏𝟎, 12

𝟒, 4 𝟏𝟒, 9

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟐, 14

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

 Have a set of 2D points
 𝑆 = { 1,5 , 2,7 , 3,1 , 4,4 , 5,13 , 6,15 7,11 , 8,10 , 9,6 , 10,12 , 11,8 , 12,14 , 13,2 , 14,9 , 15,16 , (16,3)}

 Example of 2D range search

 BST-RangeSearch(𝑇, 5, 14, 5, 9)

 find all points with 5 ≤ 𝑥 ≤ 14 and 5 ≤ 𝑦 ≤ 9

 Construct BST with 𝑥-coordinate key

 recall that points are in general positon, so all 𝑥-keys are distinct

 for any (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in our set of points, 𝑥1 ≠ 𝑥2

 can search efficiently based only on 𝑥-coordinate

2D Range Tree Motivation
𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

 could be very inefficient

 for example, |𝐴| can be, say Θ 𝑛 and |𝐵| could be 𝑂 1

 𝑂(𝑛), as bad as exhaustive search and worse than kd-trees search, 𝑂(|𝐵| + 𝑛)

 Consider 2𝐷 range search BST-RangeSearch(𝑇, 5, 14, 5, 9)

 First perform BST-RangeSearch 𝑇, 5, 14

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14

𝟖, 10

𝟏𝟐, 14

topmost inside nodes

 let 𝐴 be the set of nodes BST-RangeSearch(𝑇, 5, 14) returns

 𝐴 = { 10,12 , 6,15 , 5,13 , 14,9 , 8,10 , 7,11 , 9,6 , 12,14 , 11,8 , (13,2)}

 let 𝐵 be the set of nodes BST-RangeSearch(𝑇, 5, 14, 5, 9) should return

 𝐵 ⊆ 𝐴

 Need to go over all nodes in 𝐴 and check if their 𝑦-coordinate is in valid range, 𝑂(|𝐴|)

{ 10,12 , 6,15 , 5,13 , 14,9 , 8,10 , 7,11 , 9,6 , 12,14 , 11,8 , (13,2)}

2D Range Tree Motivation

 Next
 for boundary nodes, check if both 𝑥 and 𝑦 coordinates are in the range, takes 𝑂(log 𝑛)

time as there are 𝑂(log 𝑛) boundary nodes

 inside nodes are stored in 𝑂(log 𝑛) subtrees, with a topmost inside node as a root of
each subtree

𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14

𝟖, 10

𝟏𝟐, 14

topmost inside nodes

 Consider 2𝐷 range search BST-RangeSearch(𝑇, 5, 14, 5, 9)

 First perform only partial BST-RangeSearch 𝑇, 5, 14
 find boundary and topmost inside nodes, takes 𝑂(log 𝑛) time

 if we could search these subtrees, time would be very efficient

 however these subtrees do not support efficient search by 𝑦 coordinate

2D Range Tree Motivation2D Range Tree

11, 𝟖

12, 𝟏𝟒13, 𝟐

 Need to search subtrees by 𝑦-coordinate, but they are 𝑥-coordinate based

 Brute-force solution
 create an associate balanced BST tree for each node 𝑣

 stores the same items as the main (primary) subtree rooted at node 𝑣

 but key is 𝑦-coordinate

𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14

𝟖, 10

𝟏𝟐, 14

8, 𝟏𝟎

7, 𝟏𝟏9, 𝟔

Range Tree in ‘Full Glory’

11, 𝟖

12, 𝟏𝟒13, 𝟐

𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14

𝟖, 10

𝟏𝟐, 14

8, 𝟏𝟎

7, 𝟏𝟏9, 𝟔

Primary tree

3, 𝟏

4, 𝟒

9, 𝟔 6, 𝟏𝟓7, 𝟏𝟏

8, 𝟏𝟎

1, 𝟓 5, 𝟏𝟑

2, 𝟕

associated tree for
node (12,14)

associated tree for
node (8,10)

associated tree for node (4, 4)

𝟏, 5

associated tree for
node (1, 5)

2-dimensional Range Trees Full Definition

 Points 𝑆 = 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , 𝑥𝑛−1, 𝑦𝑛−1
 Range tree is a tree of trees (a multi-level data structure)

 Primary structure

 balanced BST 𝑇 storing 𝑆 and uses 𝑥-coordinates as keys

 assume T is balanced, so height is 𝑂(log𝑛)

 Each node 𝑣 of 𝑇 stores an associated tree 𝑇(𝑣), which is a balanced BST

Primary tree 𝑇
𝟏𝟎, 12

𝟒, 4 𝟏𝟒, 9

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟐, 14

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝑇(12,14)

11, 𝟖

12, 𝟏𝟒13, 𝟐

 let 𝑆(𝑣) be all descendants of 𝑣 in 𝑇, including 𝑣

 𝑇(𝑣) stores 𝑆(𝑣) in BST, using 𝑦-coordinates as key

 note that 𝑣 is not necessarily the root of 𝑇(𝑣)

Range search in 2D Range Tree Overview

 RangeTree::RangeSearch 𝑇, 𝑥1, 𝑥2, 𝑦1, 𝑦2
 RangeTree::RangeSearch(𝑇, 5, 14, 5, 9)

1. Perform modified BST-RangeSearch(𝑇, 5, 14)

 find boundary and topmost inside nodes, but do not go through the inside subtrees

 modified version takes 𝑂(log𝑛) time

 does not visit all the nodes in valid range for BST-RangeSearch 𝑇, 5, 14

3. For every topmost inside node 𝑣, search in associated tree BST::RangeSearch 𝑇(𝑣), 5, 9

2. Check if boundary nodes have valid 𝑥-coordinate and valid 𝑦-coordinate

𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14

𝟖, 10

𝟏𝟐, 14

topmost inside nodes

Range Tree Range Search Example Finished

 For every topmost inside node 𝑣, search in associated tree BST-RangeSearch 𝑇(𝑣), 5, 9

𝟏𝟎, 12

𝟒, 4

𝟐, 7

𝟏, 5 𝟑, 1

𝟔, 15

𝟓, 13 𝟖, 10

𝟕, 11 𝟗, 6

𝟏𝟑, 2𝟏𝟏, 8

𝟏𝟔, 3

𝟏𝟓, 16

𝟏𝟎, 12

𝟒, 4

𝟔, 15

𝟓, 13

𝟏𝟒, 9𝟏𝟒, 9

𝟏𝟐, 14𝟏𝟐, 14

𝟖, 10

 RangeTree::RangeSearch(𝑇, 5, 14, 5, 9)

BST-rangeSearch(𝑇(8,10), 5,9) BST-RangeSearch(𝑇(12,14), 5,9)

8, 𝟏𝟎

7, 𝟏𝟏9, 𝟔

8, 𝟏𝟎

9, 𝟔

11, 𝟖

12, 𝟏𝟒13, 𝟐

11, 𝟖

13, 𝟐 12, 𝟏𝟒

7, 𝟏𝟏

Range Tree Space Analysis

 Space for all associated trees is

 Primary tree 𝑇 uses 𝑂(𝑛) space

 For each 𝑣, associated tree 𝑇(𝑣) uses
𝑂(|𝑇(𝑣)|) space

𝑣

𝑣

𝑣

𝑣

𝑣

𝑣

𝑣∈𝑇

𝑇 𝑣 =

=

𝑣∈𝑇

#of ancestors of 𝑣

= 𝑐𝑛 log 𝑛≤

𝑣∈𝑇

𝑐log 𝑛

≤ 𝑐log 𝑛

= + + + + +

in how many associate
trees no appears?

#of ancestors of 𝑣

𝑇

+ + + + +

 Space is 𝑂(𝑛 log 𝑛)
 in the worst case, have 𝑛/2 leaves at the last level, and

space needed is Θ(𝑛 log 𝑛)

Range Trees: Dictionary Operations

 Delete

 analogous to insertion

 Problem

 want binary search trees to be balanced

 if we use AVL-trees, it makes insert/delete very slow

 rotation at 𝑣 changes 𝑆(𝑣) and hence requires re-build of 𝑇(𝑣)

 instead of rotations, can allow certain imbalance, rebuild
entire subtree if violated

 no details

 Search(𝑥, 𝑦)

 search by 𝑥 coordinate in the primary tree 𝑇

 Insert(𝑥, 𝑦)

 first, insert point by 𝑥-coordinate into the primary tree 𝑇

 then walk up to root and insert point by 𝑦-coordinate in all 𝑇(𝑣) of
nodes 𝑣 on path to root

Range Trees: Range Search Runtime
𝑇

 Find boundary nodes in the primary tree
and check if keys are in the range

 𝑂(log𝑛)

 Find topmost inside nodes in primary tree

 𝑂(log 𝑛)

topmost inside
nodes

inside subtrees do not have any
nodes in common

 For each topmost inside node 𝑣, perform
range search for 𝑦-range in associate tree

 𝑂(log 𝑛) topmost inside nodes

 running time for one search is 𝑂(log 𝑛 + 𝑠𝑣)

topmost inside
node 𝑣

𝑐(log 𝑛 + 𝑠𝑣) +

topmost inside
node 𝑣

𝑐𝑠𝑣=

topmost inside
node 𝑣

𝑐log 𝑛

𝑂(log2𝑛) ≤ 𝑐𝑠

 Time for range search in range tree: 𝑂(𝑠 + log2𝑛)
 can make this even more efficient, but this is beyond the scope of the course

 let 𝑠𝑣 be #items returned for the subtree of topmost node 𝑣

Range Trees: Higher Dimensions

 Range trees can be generalized to d -dimensional space
 space 𝑂(𝑛 (log 𝑛)𝑑−1)

 construction time 𝑂(𝑛 (log 𝑛)𝑑)

 range search time 𝑂(𝑠 + (log 𝑛)𝑑)

 Note: 𝑑 is considered to be a constant

 Space-time tradeoff compared to kd trees

Outline

 Range-Searching in Dictionaries for Points

 Range Search

 Multi-Dimensional Data

 Quadtrees

 kd-Trees

 Range Trees

 Conclusion

Range Search Data Structures Summary
 Quadtrees
 simple, easy to implement insert/delete (i.e. dynamic set of points)

 work well only if points evenly distributed

 wastes space for higher dimensions

 convention: points on split lines belong to the right/top side

 kd-trees
 linear space

 range search is 𝑂(𝑠 + 𝑛)

 inserts/deletes destroy balance and range search time

 fix with occasional rebuilt

 convention: points on split lines belong to the right/top side

 Range trees
 fastest range search 𝑂(𝑠 + log2𝑛)

 wastes some space

 insert and delete destroy balance, but can fix this with occasional rebuilt

