
CS 240 – Data Structures and Data Management

Module 9: String Matching

A. Hunt O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

version 2023-03-08 23:30

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 1 / 40

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
String Matching with Finite Automata
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays
Conclusion

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
String Matching with Finite Automata
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays
Conclusion

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023

Pattern Matching Definition [1]

Search for a string (pattern) in a large body of text
T [0..n − 1] – The text (or haystack) being searched within
P[0..m − 1] – The pattern (or needle) being searched for
Strings over alphabet Σ
Return smallest i such that

P[j] = T [i + j] for 0 ≤ j ≤ m − 1

This is the first occurrence of P in T
If P does not occur in T , return FAIL
Applications:

I Information Retrieval (text editors, search engines)
I Bioinformatics
I Data Mining

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 2 / 40

Pattern Matching Definition [2]

Example:
T = “Where is he?”
P1 = “he”
P2 = “who”

Definitions:
Substring T [i ..j] 0 ≤ i ≤ j < n: a string of length j − i + 1 which
consists of characters T [i], . . .T [j] in order
A prefix of T :
a substring T [0..i] of T for some 0 ≤ i < n
A suffix of T :
a substring T [i ..n − 1] of T for some 0 ≤ i ≤ n − 1

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 3 / 40

General Idea of Algorithms

Pattern matching algorithms consist of guesses and checks:
A guess or shift is a position i such that P might start at T [i].
Valid guesses (initially) are 0 ≤ i ≤ n −m.
A check of a guess is a single position j with 0 ≤ j < m where we
compare T [i + j] to P[j]. We must perform m checks of a single
correct guess, but may make (many) fewer checks of an incorrect
guess.

We will diagram a single run of any pattern matching algorithm by a
matrix of checks, where each row represents a single guess.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 4 / 40

Brute-force Algorithm
Idea: Check every possible guess.

Bruteforce::patternMatching(T [0..n − 1],P[0..m − 1])
T : String of length n (text), P: String of length m (pattern)
1. for i ← 0 to n −m do
2. if strcmp(T [i ..i+m−1],P) = 0
3. return “found at guess i”
4. return FAIL

Note: strcmp takes Θ(m) time.

strcmp(T [i ..i+m−1],P[0..m − 1])
1. for j ← 0 to m − 1 do
2. if T [i + j] is before P[j] in Σ then return -1
3. if T [i + j] is after P[j] in Σ then return 1
4. return 0

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 5 / 40

Brute-Force Example

Example: T = abbbababbab, P = abba
a b b b a b a b b a b
a b b a

a
a

a
a b b

a
a b b a

What is the worst possible input?
P = am−1b, T = an

Worst case performance Θ((n −m) ·m)
This is Θ(mn) e.g. if m ≤ n/2.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 6 / 40

How to improve?
Do extra preprocessing on the pattern P

I Karp-Rabin
I Boyer-Moore
I Deterministic finite automata (DFA), KMP
I We eliminate guesses based on completed matches and mismatches.

Do extra preprocessing on the text T
I Suffix-trees
I Suffix-arrays
I We create a data structure to find matches easily.

Pre-process

Pre-process P

Karp-Rabin NFA/DFA Knuth-Morris-Pratt Boyer-Moore

Pre-process T

Suffix tree Suffix array

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 7 / 40

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
String Matching with Finite Automata
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays
Conclusion

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023

Karp-Rabin Fingerprint Algorithm – Idea
Idea: use hashing to eliminate guesses

Compute fingerprint (hash function) for each guess
If different from P’s fingerprint, then the guess cannot be an
occurrence ⇒ no need to do a string-compare.
Example: P = 5 9 2 6 5, T = 3 1 4 1 5 9 2 6 5 3 5

I Use standard hash-function: flattening + modular (radix R = 10):

h(x0 . . . x4) =
(
x0x1x2x3x4

)
10 mod 97

I h(P) = 59265 mod 97 = 95.
3 1 4 1 5 9 2 6 5 3 5

hash-value 84
hash-value 94

hash-value 76
hash-value 18

hash-value 95
I The first four guesses do not use any checks.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 8 / 40

Karp-Rabin Fingerprint Algorithm – First Attempt

Karp-Rabin-Simple::patternMatching(T ,P)
1. hP ← h(P[0..m−1)])
2. for i ← 0 to n −m
3. hT ← h(T [i ..i+m−1])
4. if hT = hP
5. if strcmp(T [i ..i+m−1],P) = 0
6. return “found at guess i”
7. return FAIL

Never misses a match: h(T [i ..i+m−1]) 6= h(P)⇒ guess i is not P
h(T [i ..i+m−1]) depends on m characters, so naive computation
takes Θ(m) time per guess
Running time is Θ(mn) if P not in T (how can we improve this?)

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 9 / 40

Karp-Rabin Fingerprint Algorithm – Fast Update
Crucial insight: We can update the fingerprints in constant time.

Use previous hash to compute next hash
O(1) time per hash, except first one

Example:
Pre-compute: 10000 mod 97 = 9
Previous hash: 41592 mod 97 = 76
Next hash: 15926 mod 97 = ??

Observe: 15926 = (41592− 4 · 10 000) · 10 + 6

15926 mod 97 =
(

(41592 mod 97︸ ︷︷ ︸
76 (previous hash)

−4 · 10000 mod 97︸ ︷︷ ︸
9 (pre-computed)

)
·10+6) mod 97

=
(

(76− 4 · 9) · 10 + 6
)

mod 97 = 18

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 10 / 40

Karp-Rabin Fingerprint Algorithm – Fast Update
Crucial insight: We can update the fingerprints in constant time.

Use previous hash to compute next hash
O(1) time per hash, except first one

Example:
Pre-compute: 10000 mod 97 = 9
Previous hash: 41592 mod 97 = 76
Next hash: 15926 mod 97 = ??

Observe: 15926 = (41592− 4 · 10 000) · 10 + 6

15926 mod 97 =
(

(41592 mod 97︸ ︷︷ ︸
76 (previous hash)

−4 · 10000 mod 97︸ ︷︷ ︸
9 (pre-computed)

)
·10+6) mod 97

=
(

(76− 4 · 9) · 10 + 6
)

mod 97 = 18

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 10 / 40

Karp-Rabin Fingerprint Algorithm – Conclusion

Karp-Rabin-RollingHash::patternMatching(T ,P)
1. M ← suitable prime number
2. hP ← h(P[0..m−1)])
3. hT ← h(T [0..m−1)])
4. s ← 10m−1 mod M
5. for i ← 0 to n −m
6. if hT = hP
7. if strcmp(T [i ..i+m−1],P) = 0
8. return “found at guess i”
9. if i < n −m // compute hash-value for next guess
10. hT ← ((hT − T [i] · s) · 10 + T [i+m]) mod M
11. return “FAIL”

Choose “table size” M to be random prime in {2, . . . ,mn2}
Expected time O(m+n), worst-luck time O(m·n) (extremely unlikely)
Improvement: reset M if no match at hT = hP

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 11 / 40

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
String Matching with Finite Automata
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays
Conclusion

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023

String Matching with Finite Automata

Example: Automaton for the pattern P = ababaca

0 1 2 3 4 5 6 7
a

Σ

b a b a c a

Σ

 You should be familiar with:
finite automaton, DFA, NFA, converting NFA to DFA
transition function δ, states Q, accepting states F

The above finite automation is an NFA
State q expresses “we have seen P[0..q−1]”

I NFA accepts T if and only if T contains ababaca
I But evaluating NFAs is very slow.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 12 / 40

String Matching with Finite Automata

Example: Automaton for the pattern P = ababaca

0 1 2 3 4 5 6 7
a

Σ

b a b a c a

Σ

 You should be familiar with:
finite automaton, DFA, NFA, converting NFA to DFA
transition function δ, states Q, accepting states F

The above finite automation is an NFA
State q expresses “we have seen P[0..q−1]”

I NFA accepts T if and only if T contains ababaca
I But evaluating NFAs is very slow.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 12 / 40

String matching with DFA

Can show: There exists an equivalent small DFA (Σ = {a, b, c}).

0 1 2 3 4 5 6 7
a

b,c a

b

c

a

b,c

a

b

c

a

b,c

a

b
c a

b,c

Σ

Easy to test whether P is in T .
But how do we find the arcs?
We will not give the details of this since there is an even better
automaton.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 13 / 40

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
String Matching with Finite Automata
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays
Conclusion

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023

Knuth-Morris-Pratt Motivation

0 1 2 3 4 5 6 7
a

Σ− a

b

×

a

×

b

×

a

×

c

×

a

×

Σ

Use a new type of transition × (“failure”):
I At most one per state, use it only if no other transition fits.
I Does not consume a character.
I With these rules, computations of the automaton are deterministic.

(But it is formally not a valid DFA.)

Can store failure-function in an array F [0..m−1]
I The failure arc from state j leads to F [j − 1]

Given the failure-array, we can easily test whether P is in T :
Automaton accepts T if and only if T contains ababaca

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 14 / 40

Knuth-Morris-Pratt Motivation

0 1 2 3 4 5 6 7
a

Σ− a

b

×

a

×

b

×

a

×

c

×

a

×

Σ

Use a new type of transition × (“failure”):
I At most one per state, use it only if no other transition fits.
I Does not consume a character.
I With these rules, computations of the automaton are deterministic.

(But it is formally not a valid DFA.)
Can store failure-function in an array F [0..m−1]

I The failure arc from state j leads to F [j − 1]
Given the failure-array, we can easily test whether P is in T :
Automaton accepts T if and only if T contains ababaca

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 14 / 40

Knuth-Morris-Pratt Algorithm

KMP::patternMatching(T ,P)
1. F ← failureArray(P)
2. i ← 0 // current character of T to parse
3. j ← 0 // current state: we have seen P[0..j−1]
4. while i < n do
5. if P[j] = T [i]
6. if j = m − 1
7. return “found at guess i −m + 1”
8. else
9. i ← i + 1
10. j ← j + 1
11. else // i. e. P[j] 6= T [i]
12. if j > 0
13. j ← F [j − 1]
14. else
15. i ← i + 1
16. return FAIL

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 15 / 40

String matching with KMP – Example
Example: T = ababababaca, P = ababaca

0 1 2 3 4 5 6 7
a

Σ− a

b

×

a

×

b

×

a

×

c

×

a

×

Σ

T : a b a b a b b c a b a b a c a
a b a b a ×

(a) (b) (a) b ×
(a) (b) ×

×
×

a b a b a c a

state: 1 2 3 4 5 3, 4 2, 0 0 1 2 3 4 5 6 7
(after reading this character)

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 16 / 40

String matching with KMP – Failure-function
Assume we reach state j+1 and now have mismatch.

T : ...matched P[0..j]...
current guessP[0..j]...... ×

shift by 1?P[0..j−1]....
shift by 2?P[0..j−2]...
Can eliminate “shift by 1” if P[1..j] 6= P[0..j−1].
Can eliminate “shift by 2” if P[1..j] does not end with P[0..j−2].
Generally eliminate guess if that prefix of P is not a suffix of P[1..j].
So want longest prefix P[0..`−1] that is a suffix of P[1..j].
The ` characters of this prefix are matched, so go to state `.

F [j] = head of failure-arc from state j+1
= length of the longest prefix of P that is a suffix of P[1..j].

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 17 / 40

KMP Failure Array – Example

F [j] is the length of the longest prefix of P that is a suffix of P[1..j].

Consider P = ababaca

j P[1..j] Prefixes of P longest F [j]
0 Λ Λ, a, ab, aba, abab, ababa, . . . Λ 0
1 b Λ, a, ab, aba, abab, ababa, . . . Λ 0
2 ba Λ, a, ab, aba, abab, ababa, . . . a 1
3 bab Λ, a, ab, aba, abab, ababa, . . . ab 2
4 baba Λ, a, ab, aba, abab, ababa, . . . aba 3
5 babac Λ, a, ab, aba, abab, ababa, . . . Λ 0
6 babaca Λ, a, ab, aba, abab, ababa, . . . a 1

This can clearly be computed in O(m3) time, but we can do better!

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 18 / 40

Computing the Failure Array

KMP::failureArray(P)
P: String of length m (pattern)
1. F [0]← 0
2. j ← 1 // index within parsed text
3. `← 0 // reached state
4. while j < m do
5. if P[j] = P[`]
6. `← `+ 1
7. F [j]← `
8. j ← j + 1
9. else if ` > 0
10. `← F [`− 1]
11. else
12. F [j]← 0
13. j ← j + 1

Correctness-idea: F [j] is defined via pattern matching of P in P[1..j].
So KMP uses itself! Already-built parts of F [·] are used to expand it.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 19 / 40

KMP – Runtime

failureArray
Consider how 2j − ` changes in each iteration of the while loop

I j and ` both increase by 1 ⇒ 2j − ` increases –OR–
I ` decreases (F [`− 1] < `) ⇒ 2j − ` increases –OR–
I j increases ⇒ 2j − ` increases

Initially 2j − ` ≥ 0, at the end 2j − ` ≤ 2m
So no more than 2m iterations of the while loop.
Running time: Θ(m)

KMP main function
failureArray can be computed in Θ(m) time
Same analysis gives at most 2n iterations of the while loop since
2i − j ≤ 2n.
Running time KMP altogether: Θ(n + m)

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 20 / 40

KMP – Runtime

failureArray
Consider how 2j − ` changes in each iteration of the while loop

I j and ` both increase by 1 ⇒ 2j − ` increases –OR–
I ` decreases (F [`− 1] < `) ⇒ 2j − ` increases –OR–
I j increases ⇒ 2j − ` increases

Initially 2j − ` ≥ 0, at the end 2j − ` ≤ 2m
So no more than 2m iterations of the while loop.
Running time: Θ(m)

KMP main function
failureArray can be computed in Θ(m) time
Same analysis gives at most 2n iterations of the while loop since
2i − j ≤ 2n.
Running time KMP altogether: Θ(n + m)

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 20 / 40

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
String Matching with Finite Automata
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays
Conclusion

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023

Boyer-Moore Algorithm

Fastest pattern matching on English text.

Important components:
Reverse-order searching: Compare P with a guess moving backwards

When a mismatch occurs, choose the better of the following two options:
Bad character jumps: Eliminate guesses based on mismatched
characters of T .
Good suffix jumps: Eliminate guesses based on matched suffix of P.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 21 / 40

Forward-searching vs. reverse-searching

P: aldo
T : whereiswaldo

Forward-searching:
w h e r e i s w a l d o

a
a

a

w does not occur in P.
⇒ shift pattern past w.
h does not occur in P.
⇒ shift pattern past h.

With forward-searching, no guesses
are ruled out.

Reverse-searching:
w h e r e i s w a l d o

o
o

a l d o

r does not occur in P.
⇒ shift pattern past r.
w does not occur in P.
⇒ shift pattern past w.

This bad character heuristic works
well with reverse-searching.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 22 / 40

Forward-searching vs. reverse-searching

P: aldo
T : whereiswaldo

Forward-searching:
w h e r e i s w a l d o
a

a
a

w does not occur in P.
⇒ shift pattern past w.

h does not occur in P.
⇒ shift pattern past h.

With forward-searching, no guesses
are ruled out.

Reverse-searching:
w h e r e i s w a l d o

o

o
a l d o

r does not occur in P.
⇒ shift pattern past r.

w does not occur in P.
⇒ shift pattern past w.

This bad character heuristic works
well with reverse-searching.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 22 / 40

Forward-searching vs. reverse-searching

P: aldo
T : whereiswaldo

Forward-searching:
w h e r e i s w a l d o
a

a

a

w does not occur in P.
⇒ shift pattern past w.
h does not occur in P.
⇒ shift pattern past h.

With forward-searching, no guesses
are ruled out.

Reverse-searching:
w h e r e i s w a l d o

o
o

a l d o

r does not occur in P.
⇒ shift pattern past r.
w does not occur in P.
⇒ shift pattern past w.

This bad character heuristic works
well with reverse-searching.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 22 / 40

Forward-searching vs. reverse-searching

P: aldo
T : whereiswaldo

Forward-searching:
w h e r e i s w a l d o
a

a
a

w does not occur in P.
⇒ shift pattern past w.
h does not occur in P.
⇒ shift pattern past h.

With forward-searching, no guesses
are ruled out.

Reverse-searching:
w h e r e i s w a l d o

o
o

a l d o

r does not occur in P.
⇒ shift pattern past r.
w does not occur in P.
⇒ shift pattern past w.

This bad character heuristic works
well with reverse-searching.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 22 / 40

Bad character heuristic details
P : p a p e r
T : f e e d a l l p o o r p a r r o t s

r
[a] r

[p] r
e r

Mismatched character in the text is a
Shift the guess until a in P aligns with a in T

I All skipped guessed are impossible since they do not match a

Shift the guess until last p in P aligns with p in T
I Use “last” since we cannot rule out this guess.

As before, shift completely past o since o is not in P.

Finding r does not help ⇒ shift by one unit.
I Here the other strategy will do better.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 23 / 40

Bad character heuristic details
P : p a p e r
T : f e e d a l l p o o r p a r r o t s

r

[a] r
[p] r

e r

Mismatched character in the text is a

Shift the guess until a in P aligns with a in T

I All skipped guessed are impossible since they do not match a

Shift the guess until last p in P aligns with p in T
I Use “last” since we cannot rule out this guess.

As before, shift completely past o since o is not in P.

Finding r does not help ⇒ shift by one unit.
I Here the other strategy will do better.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 23 / 40

Bad character heuristic details
P : p a p e r
T : f e e d a l l p o o r p a r r o t s

r
[a]

r
[p] r

e r

Mismatched character in the text is a
Shift the guess until a in P aligns with a in T

I All skipped guessed are impossible since they do not match a

Shift the guess until last p in P aligns with p in T
I Use “last” since we cannot rule out this guess.

As before, shift completely past o since o is not in P.

Finding r does not help ⇒ shift by one unit.
I Here the other strategy will do better.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 23 / 40

Bad character heuristic details
P : p a p e r
T : f e e d a l l p o o r p a r r o t s

r
[a] r

[p]

r
e r

Mismatched character in the text is a
Shift the guess until a in P aligns with a in T

I All skipped guessed are impossible since they do not match a

Shift the guess until last p in P aligns with p in T
I Use “last” since we cannot rule out this guess.

As before, shift completely past o since o is not in P.

Finding r does not help ⇒ shift by one unit.
I Here the other strategy will do better.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 23 / 40

Bad character heuristic details
P : p a p e r
T : f e e d a l l p o o r p a r r o t s

r
[a] r

[p] r

e r

Mismatched character in the text is a
Shift the guess until a in P aligns with a in T

I All skipped guessed are impossible since they do not match a

Shift the guess until last p in P aligns with p in T
I Use “last” since we cannot rule out this guess.

As before, shift completely past o since o is not in P.

Finding r does not help ⇒ shift by one unit.
I Here the other strategy will do better.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 23 / 40

Bad character heuristic details
P : p a p e r
T : f e e d a l l p o o r p a r r o t s

r
[a] r

[p] r
e r

Mismatched character in the text is a
Shift the guess until a in P aligns with a in T

I All skipped guessed are impossible since they do not match a

Shift the guess until last p in P aligns with p in T
I Use “last” since we cannot rule out this guess.

As before, shift completely past o since o is not in P.

Finding r does not help ⇒ shift by one unit.
I Here the other strategy will do better.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 23 / 40

Last-Occurrence Array

Build the last-occurrence array L mapping Σ to integers
L[c] is the largest index i such that P[i] = c
We will see soon: If c is not in P, then we should set L[c] = −1

Pattern:
0 1 2 3 4
p a p e r

Last-Occurrence Array:
char p a e r all others
L[·] 2 1 3 4 −1

We can build this in time O(m + |Σ|) with simple for-loop
BoyerMoore::lastOccurrenceArray(P[0..m−1])
1. initialize array L indexed by Σ with all −1
2. for j ← 0 to m−1 do L[P[j]]← j
3. return L

But how should we do the update?

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 24 / 40

Bad character heuristic formula
We will always compare T [i] and P[j]. How to update at a mismatch?
“Good” case: L[c] < j , so c is left of P[j].

text: c
iold

inew

pattern: c
L[c] jold

∆1 ∆1∆2
m−1

c

jnew

jnew = m−1 (we re-start the search from the right end)
inew = corresponding index in T . What is it?

I ∆1 = amount that we should shift = jold − L[c]
I ∆2 = how much we had compared = (m−1)− jold

I inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 25 / 40

Bad character heuristic formula
We will always compare T [i] and P[j]. How to update at a mismatch?
“Good” case: L[c] < j , so c is left of P[j].

text: c
iold

inew

pattern: c
L[c] jold

∆1 ∆1∆2
m−1

c
jnew

jnew = m−1 (we re-start the search from the right end)

inew = corresponding index in T . What is it?

I ∆1 = amount that we should shift = jold − L[c]
I ∆2 = how much we had compared = (m−1)− jold

I inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 25 / 40

Bad character heuristic formula
We will always compare T [i] and P[j]. How to update at a mismatch?
“Good” case: L[c] < j , so c is left of P[j].

text: c
iold inew

pattern: c
L[c] jold

∆1 ∆1∆2
m−1

c
jnew

jnew = m−1 (we re-start the search from the right end)
inew = corresponding index in T . What is it?

I ∆1 = amount that we should shift = jold − L[c]
I ∆2 = how much we had compared = (m−1)− jold

I inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 25 / 40

Bad character heuristic formula
We will always compare T [i] and P[j]. How to update at a mismatch?
“Good” case: L[c] < j , so c is left of P[j].

text: c
iold inew

pattern: c
L[c] jold

∆1 ∆1

∆2
m−1

c
jnew

jnew = m−1 (we re-start the search from the right end)
inew = corresponding index in T . What is it?

I ∆1 = amount that we should shift = jold − L[c]

I ∆2 = how much we had compared = (m−1)− jold

I inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 25 / 40

Bad character heuristic formula
We will always compare T [i] and P[j]. How to update at a mismatch?
“Good” case: L[c] < j , so c is left of P[j].

text: c
iold inew

pattern: c
L[c] jold

∆1 ∆1∆2
m−1

c
jnew

jnew = m−1 (we re-start the search from the right end)
inew = corresponding index in T . What is it?

I ∆1 = amount that we should shift = jold − L[c]
I ∆2 = how much we had compared = (m−1)− jold

I inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 25 / 40

Bad character heuristic formula
We will always compare T [i] and P[j]. How to update at a mismatch?
“Good” case: L[c] < j , so c is left of P[j].

text: c
iold inew

pattern: c
L[c] jold

∆1 ∆1∆2
m−1

c
jnew

jnew = m−1 (we re-start the search from the right end)
inew = corresponding index in T . What is it?

I ∆1 = amount that we should shift = jold − L[c]
I ∆2 = how much we had compared = (m−1)− jold

I inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 25 / 40

Bad character heuristic formula

Bad case 1: c does not occur in P.

c
iold inew

jold
m

jold

jnew

We want to shift past T [iold], so need inew = iold + m
What value of L[c] would achieve this automatically?

I formula was inew = iold + (m−1)− L[c]
⇒ set L[c] := −1

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 26 / 40

Bad character heuristic formula

Bad case 1: c does not occur in P.

c
iold inew

jold
m

jold

jnew

We want to shift past T [iold], so need inew = iold + m
What value of L[c] would achieve this automatically?

I formula was inew = iold + (m−1)− L[c]
⇒ set L[c] := −1

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 26 / 40

Bad character heuristic formula
Bad case 2: L[c] > j , so c is right of P[j].

c
iold inew

c
jold

∆1 ∆1∆2
m−1jold

Bad character heuristic not helpful in this case.
We want to shift by ∆1 := 1 units

inew = iold + ∆2 + ∆1 = iold + 1 + (m−1)− jold

Unified formula for all cases: inew = iold + (m−1)−min
{
L[c], jold−1

}

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 27 / 40

Bad character heuristic formula
Bad case 2: L[c] > j , so c is right of P[j].

c
iold inew

c
jold

∆1 ∆1∆2
m−1jold

Bad character heuristic not helpful in this case.
We want to shift by ∆1 := 1 units

inew = iold + ∆2 + ∆1 = iold + 1 + (m−1)− jold

Unified formula for all cases: inew = iold + (m−1)−min
{
L[c], jold−1

}

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 27 / 40

Bad character heuristic formula
Bad case 2: L[c] > j , so c is right of P[j].

c
iold inew

c
jold

∆1 ∆1∆2
m−1jold

Bad character heuristic not helpful in this case.
We want to shift by ∆1 := 1 units

inew = iold + ∆2 + ∆1 = iold + 1 + (m−1)− jold

Unified formula for all cases: inew = iold + (m−1)−min
{
L[c], jold−1

}
Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 27 / 40

Boyer-Moore Algorithm

Boyer-Moore::patternMatching(T,P)
1. L← lastOccurrenceArray(P)
2. S ← good suffix array computed from P
3. i ← m − 1, j ← m − 1
4. while i < n and j ≥ 0 do

// current guess begins at index i − j
5. if T [i] = P[j]
6. i ← i − 1
7. j ← j − 1
8. else
9. i ← i + m−1−min{L[T [i]], j−1}
10. j ← m − 1
11. if j = −1 return “found at T [i+1..i+m]”
12. else return FAIL

If good suffix heuristic is used, then line 9 should be
i ← i + m−1−min{L[T [i]],S[j]}

where S will be explained below.
Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 28 / 40

Good Suffix Heuristic
S[j] expresses

“since P[j+1..m−1] was matched, how much should we shift?”

P : o n o b o b o
T : o n o o o b o o o i b b o u n d a r y

b o b o
Do smallest shift so that obo fits in the new guess.

(o) (b) (o)

Doing examples is easy, but the formula is complicated (no details)
S[·] computable (similar to KMP failure function) in Θ(m) time.

Summary:
Boyer-Moore performs very well (even without good suffix heuristic).
On typical English text Boyer-Moore looks at only ≈ 25% of T
Worst-case run-time for is O(mn), but in practice much faster.
[There are ways to ensure O(n) run-time. No details.]

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 29 / 40

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
String Matching with Finite Automata
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays
Conclusion

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023

Tries of Suffixes and Suffix Trees

What if we want to search for many patterns P within the same fixed
text T?
Idea: Preprocess the text T rather than the pattern P
Observation: P is a substring of T if and only if P is a prefix of some
suffix of T .
So want to store all suffixes of T in a trie.
To save space:

I Use a compressed trie.
I Store suffixes implicitly via indices into T .

This is called a suffix tree.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 30 / 40

Trie of suffixes: Example
T = bananaban has suffixes
{bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n, Λ}

$

$

aban$
$na

b
an$$

anaban$
$na

b

ananaban$
$naba

n
a

n

a

ban$$

bananaban$
$naban

a
na

b

n$$
naban$

$na
b

nanaban$
$naba

n
a

n

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 31 / 40

Tries of suffixes
Store suffixes via indices: 0 1 2 3 4 5 6 7 8 9

T = b a n a n a b a n $

T[9..9]

$

T[5..9]
$na

b
T[7..9]$

T[3..9]
$na

b

T[1..9]
$naba

n
a

n

a

T[6..9]$

T[0..9]
$naban

a
na

b

T[8..9]$
T[4..9]

$na
b

T[2..9]
$naba

n
a

n

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 32 / 40

Suffix tree
Suffix tree: Compressed trie of suffixes

0 1 2 3 4 5 6 7 8 9
T = b a n a n a b a n $

0

T[9..9]

$ 1
T[5..9]b

2
T[7..9]$

3
T[3..9]b

T[1..9]
n

a
n

a

3
T[6..9]$

T[0..9]
a

b

1
T[8..9]$

2
T[4..9]b

T[2..9]
n

a

n

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 33 / 40

More on Suffix Trees

Building:
Text T has n characters and n + 1 suffixes
We can build the suffix tree by inserting each suffix of T into a
compressed trie. This takes time Θ(n2|Σ|).
There is a way to build a suffix tree of T in Θ(n|Σ|) time.
This is quite complicated and beyond the scope of the course.

Pattern Matching:
Essentially search for P in compressed trie.
Some changes are needed, since P may only be prefix of stored word.
Run-time: O(|Σ|m).

Summary: Theoretically good, but construction is slow or complicated,
and lots of space-overhead rarely used.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 34 / 40

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
String Matching with Finite Automata
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays
Conclusion

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023

Suffix Arrays

Relatively recent development (popularized in the 1990s)
Sacrifice some performence for simplicity:

I Slightly slower (by a log-factor) than suffix trees.
I Much easier to build.
I Much simpler pattern matching.
I Very little space; only one array.

Idea:
Store suffixes implicitly (by storing start-indices)
Store sorting permutation of the suffixes of T .

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 35 / 40

Suffix Array Example
0 1 2 3 4 5 6 7 8 9

Text T : b a n a n a b a n $

i suffix T [i ..n−1]
0 bananaban$
1 ananaban$
2 nanaban$
3 anaban$
4 naban$
5 aban$
6 ban$
7 an$
8 n$
9 $

−→
sort lexicographically

j As [j]
0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$
5 6 ban$
6 0 bananaban$
7 8 n$
8 4 naban$
9 2 nanaban$

0 1 2 3 4 5 6 7 8 9
Suffix array: 9 5 7 3 1 6 0 8 4 2

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 36 / 40

Suffix Array Construction
Easy to construct using MSD-Radix-Sort.

I Fast in practice; suffixes are unlikely to share many leading characters.
I But worst-case run-time is Θ(n2)

F n rounds of recursions (have n chars)
F Each round takes Θ(n) time (bucket-sort)

Idea: We do not need n rounds! I Consider sub-array after one round.
I These have same leading char. Ties are broken by rest of words.
I But rest of words are also suffixes sorted elsewhere
I We can double length of sorted part every round.

I O(log n) rounds enough ⇒ O(n log n) run-time

Construction-algorithm: MSD-radix-sort plus some bookkeeping
I needs only one extra array
I easy to implement

You do not need to know details (cs482).

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 37 / 40

Suffix Array Construction
Easy to construct using MSD-Radix-Sort.

I Fast in practice; suffixes are unlikely to share many leading characters.
I But worst-case run-time is Θ(n2)

F n rounds of recursions (have n chars)
F Each round takes Θ(n) time (bucket-sort)

Idea: We do not need n rounds! I Consider sub-array after one round.
I These have same leading char. Ties are broken by rest of words.
I But rest of words are also suffixes sorted elsewhere
I We can double length of sorted part every round.

I O(log n) rounds enough ⇒ O(n log n) run-time

Construction-algorithm: MSD-radix-sort plus some bookkeeping
I needs only one extra array
I easy to implement

You do not need to know details (cs482).

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 37 / 40

Pattern matching in suffix arrays
Suffix array stores suffixes (implicitly) in sorted order.
Idea: apply binary search!

P =ban:
j As [j] T [As [j]..n−1]

`→ 0 9 $
1 5 aban$
2 7 an$
3 3 anaban$

ν → 4 1 ananaban$
5 6 ban$
6 0 bananaban$
7 8 n$
8 4 naban$

r → 9 2 nanaban$

O(log n) comparisons.
Each comparison is strcmp(P,T [As [ν]..As [ν] + m − 1])
O(m) time per comparison ⇒ run-time O(m log n)

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 38 / 40

Pattern matching in suffix arrays
Suffix array stores suffixes (implicitly) in sorted order.
Idea: apply binary search!

P =ban:
j As [j] T [As [j]..n−1]
0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$

`→ 5 6 ban$
6 0 bananaban$

ν → 7 8 n$
8 4 naban$

r → 9 2 nanaban$

O(log n) comparisons.
Each comparison is strcmp(P,T [As [ν]..As [ν] + m − 1])
O(m) time per comparison ⇒ run-time O(m log n)

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 38 / 40

Pattern matching in suffix arrays
Suffix array stores suffixes (implicitly) in sorted order.
Idea: apply binary search!

P =ban:
j As [j] T [As [j]..n−1]
0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$

ν=`→ 5 6 ban$ found
r → 6 0 bananaban$

7 8 n$
8 4 naban$
9 2 nanaban$

O(log n) comparisons.
Each comparison is strcmp(P,T [As [ν]..As [ν] + m − 1])
O(m) time per comparison ⇒ run-time O(m log n)

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 38 / 40

Pattern matching in suffix arrays
Suffix array stores suffixes (implicitly) in sorted order.
Idea: apply binary search!

P =ban:
j As [j] T [As [j]..n−1]
0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$

ν=`→ 5 6 ban$ found
r → 6 0 bananaban$

7 8 n$
8 4 naban$
9 2 nanaban$

O(log n) comparisons.
Each comparison is strcmp(P,T [As [ν]..As [ν] + m − 1])
O(m) time per comparison ⇒ run-time O(m log n)

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 38 / 40

Pattern matching in suffix arrays

SuffixArray::patternMatching(T ,P,As [0...n−1]
As : suffix array of T
1. `← 0, r ← n − 1
2. while (` < r)

3. ν ← b `+r
2 c

4. i ← As [ν] // Suffix is T [i ..n−1]
5. s ← strcmp(P,T [i ..i+m−1])
6. // Assuming strcmp handles “out of bounds” suitably
7. if (s > 0) do `← ν + 1
8. else if (s < 0) do r ← ν − 1
9. else return “found at guess T [i ..i+m−1]”
10. if strcmp(P,T [As [`]..As [`]+m−1]) = 0
11. return “found at guess T [As [`]..As [`]+m−1]”
12. return FAIL

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 39 / 40

Outline

9 String Matching
Introduction
Karp-Rabin Algorithm
String Matching with Finite Automata
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees
Suffix Arrays
Conclusion

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023

String Matching Conclusion

Brute-
Force

Karp-
Rabin DFA Knuth-

Morris-
Pratt

Boyer-
Moore

Suffix
Tree

Suffix
Array

Preproc. — O(m) O(m|Σ|) O(m) O(m+|Σ|) O(n2|Σ|) O(n log n)
[O(n|Σ|)] [O(n)]

Search
time

O(nm) O(n+m)
expected

O(n) O(n) O(n) or
better

O(m) O(m log n)
[O(m + log n)]

Extra — O(1) O(m|Σ|) O(m) O(m+|Σ|) O(n) O(n)space

Our algorithms stopped once they have found one occurrence.
Most of them can be adapted to find all occurrences within the same
worst-case run-time.

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 40 / 40

	String Matching
	Introduction
	Pattern Matching Definition [1]
	Pattern Matching Definition [2]
	General Idea of Algorithms
	Brute-force Algorithm
	Brute-Force Example
	How to improve?

	Karp-Rabin Algorithm
	Karp-Rabin Fingerprint Algorithm – Idea
	Karp-Rabin Fingerprint Algorithm – First Attempt
	Karp-Rabin Fingerprint Algorithm – Fast Update
	Karp-Rabin Fingerprint Algorithm – Conclusion

	String Matching with Finite Automata
	String Matching with Finite Automata
	String matching with DFA

	Knuth-Morris-Pratt algorithm
	Knuth-Morris-Pratt Motivation
	Knuth-Morris-Pratt Algorithm
	String matching with KMP – Example
	String matching with KMP – Failure-function
	KMP Failure Array – Example
	Computing the Failure Array
	KMP – Runtime

	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Forward-searching vs. reverse-searching
	Bad character heuristic details
	Last-Occurrence Array
	Bad character heuristic formula
	Bad character heuristic formula
	Bad character heuristic formula
	Boyer-Moore Algorithm
	Good Suffix Heuristic

	Suffix Trees
	Tries of Suffixes and Suffix Trees
	Trie of suffixes: Example
	Tries of suffixes
	Suffix tree
	More on Suffix Trees

	Suffix Arrays
	Suffix Arrays
	Suffix Array Example
	Suffix Array Construction
	Pattern matching in suffix arrays
	Pattern matching in suffix arrays

	Conclusion
	String Matching Conclusion

