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Pattern Matching Definition [1]

Search for a string (pattern) in a large body of text
T [0..n − 1] – The text (or haystack) being searched within
P[0..m − 1] – The pattern (or needle) being searched for
Strings over alphabet Σ
Return smallest i such that

P[j] = T [i + j] for 0 ≤ j ≤ m − 1

This is the first occurrence of P in T
If P does not occur in T , return FAIL
Applications:

I Information Retrieval (text editors, search engines)
I Bioinformatics
I Data Mining
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Pattern Matching Definition [2]

Example:
T = “Where is he?”
P1 = “he”
P2 = “who”

Definitions:
Substring T [i ..j] 0 ≤ i ≤ j < n: a string of length j − i + 1 which
consists of characters T [i ], . . .T [j] in order
A prefix of T :
a substring T [0..i ] of T for some 0 ≤ i < n
A suffix of T :
a substring T [i ..n − 1] of T for some 0 ≤ i ≤ n − 1
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General Idea of Algorithms

Pattern matching algorithms consist of guesses and checks:
A guess or shift is a position i such that P might start at T [i ].
Valid guesses (initially) are 0 ≤ i ≤ n −m.
A check of a guess is a single position j with 0 ≤ j < m where we
compare T [i + j] to P[j]. We must perform m checks of a single
correct guess, but may make (many) fewer checks of an incorrect
guess.

We will diagram a single run of any pattern matching algorithm by a
matrix of checks, where each row represents a single guess.
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Brute-force Algorithm
Idea: Check every possible guess.

Bruteforce::patternMatching(T [0..n − 1],P[0..m − 1])
T : String of length n (text), P: String of length m (pattern)
1. for i ← 0 to n −m do
2. if strcmp(T [i ..i+m−1],P) = 0
3. return “found at guess i”
4. return FAIL

Note: strcmp takes Θ(m) time.

strcmp(T [i ..i+m−1],P[0..m − 1])
1. for j ← 0 to m − 1 do
2. if T [i + j] is before P[j] in Σ then return -1
3. if T [i + j] is after P[j] in Σ then return 1
4. return 0
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Brute-Force Example

Example: T = abbbababbab, P = abba
a b b b a b a b b a b
a b b a

a
a

a
a b b

a
a b b a

What is the worst possible input?
P = am−1b, T = an

Worst case performance Θ((n −m) ·m)
This is Θ(mn) e.g. if m ≤ n/2.
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How to improve?
Do extra preprocessing on the pattern P

I Karp-Rabin
I Boyer-Moore
I Deterministic finite automata (DFA), KMP
I We eliminate guesses based on completed matches and mismatches.

Do extra preprocessing on the text T
I Suffix-trees
I Suffix-arrays
I We create a data structure to find matches easily.

Pre-process

Pre-process P

Karp-Rabin NFA/DFA Knuth-Morris-Pratt Boyer-Moore

Pre-process T

Suffix tree Suffix array
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Karp-Rabin Fingerprint Algorithm – Idea
Idea: use hashing to eliminate guesses

Compute fingerprint (hash function) for each guess
If different from P’s fingerprint, then the guess cannot be an
occurrence ⇒ no need to do a string-compare.
Example: P = 5 9 2 6 5, T = 3 1 4 1 5 9 2 6 5 3 5

I Use standard hash-function: flattening + modular (radix R = 10):

h(x0 . . . x4) =
(
x0x1x2x3x4

)
10 mod 97

I h(P) = 59265 mod 97 = 95.
3 1 4 1 5 9 2 6 5 3 5

hash-value 84
hash-value 94

hash-value 76
hash-value 18

hash-value 95
I The first four guesses do not use any checks.
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Karp-Rabin Fingerprint Algorithm – First Attempt

Karp-Rabin-Simple::patternMatching(T ,P)
1. hP ← h(P[0..m−1)])
2. for i ← 0 to n −m
3. hT ← h(T [i ..i+m−1])
4. if hT = hP
5. if strcmp(T [i ..i+m−1],P) = 0
6. return “found at guess i”
7. return FAIL

Never misses a match: h(T [i ..i+m−1]) 6= h(P)⇒ guess i is not P
h(T [i ..i+m−1]) depends on m characters, so naive computation
takes Θ(m) time per guess
Running time is Θ(mn) if P not in T (how can we improve this?)
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Karp-Rabin Fingerprint Algorithm – Fast Update
Crucial insight: We can update the fingerprints in constant time.

Use previous hash to compute next hash
O(1) time per hash, except first one

Example:
Pre-compute: 10000 mod 97 = 9
Previous hash: 41592 mod 97 = 76
Next hash: 15926 mod 97 = ??

Observe: 15926 = (41592− 4 · 10 000) · 10 + 6

15926 mod 97 =
(

(41592 mod 97︸ ︷︷ ︸
76 (previous hash)

−4 · 10000 mod 97︸ ︷︷ ︸
9 (pre-computed)

)
·10+6) mod 97

=
(

(76− 4 · 9) · 10 + 6
)

mod 97 = 18
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Karp-Rabin Fingerprint Algorithm – Conclusion

Karp-Rabin-RollingHash::patternMatching(T ,P)
1. M ← suitable prime number
2. hP ← h(P[0..m−1)])
3. hT ← h(T [0..m−1)])
4. s ← 10m−1 mod M
5. for i ← 0 to n −m
6. if hT = hP
7. if strcmp(T [i ..i+m−1],P) = 0
8. return “found at guess i”
9. if i < n −m // compute hash-value for next guess
10. hT ← ((hT − T [i ] · s) · 10 + T [i+m]) mod M
11. return “FAIL”

Choose “table size” M to be random prime in {2, . . . ,mn2}
Expected time O(m+n), worst-luck time O(m·n) (extremely unlikely)
Improvement: reset M if no match at hT = hP
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String Matching with Finite Automata

Example: Automaton for the pattern P = ababaca

0 1 2 3 4 5 6 7
a

Σ

b a b a c a

Σ

 You should be familiar with:
finite automaton, DFA, NFA, converting NFA to DFA
transition function δ, states Q, accepting states F



The above finite automation is an NFA
State q expresses “we have seen P[0..q−1]”

I NFA accepts T if and only if T contains ababaca
I But evaluating NFAs is very slow.
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String matching with DFA

Can show: There exists an equivalent small DFA (Σ = {a, b, c}).

0 1 2 3 4 5 6 7
a

b,c a

b

c

a

b,c

a

b

c

a

b,c

a

b
c a

b,c

Σ

Easy to test whether P is in T .
But how do we find the arcs?
We will not give the details of this since there is an even better
automaton.
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Knuth-Morris-Pratt Motivation

0 1 2 3 4 5 6 7
a

Σ− a

b

×

a

×

b

×

a

×

c

×

a

×

Σ

Use a new type of transition × (“failure”):
I At most one per state, use it only if no other transition fits.
I Does not consume a character.
I With these rules, computations of the automaton are deterministic.

(But it is formally not a valid DFA.)

Can store failure-function in an array F [0..m−1]
I The failure arc from state j leads to F [j − 1]

Given the failure-array, we can easily test whether P is in T :
Automaton accepts T if and only if T contains ababaca
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Knuth-Morris-Pratt Algorithm

KMP::patternMatching(T ,P)
1. F ← failureArray(P)
2. i ← 0 // current character of T to parse
3. j ← 0 // current state: we have seen P[0..j−1]
4. while i < n do
5. if P[j] = T [i ]
6. if j = m − 1
7. return “found at guess i −m + 1”
8. else
9. i ← i + 1
10. j ← j + 1
11. else // i. e. P[j] 6= T [i ]
12. if j > 0
13. j ← F [j − 1]
14. else
15. i ← i + 1
16. return FAIL
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String matching with KMP – Example
Example: T = ababababaca, P = ababaca

0 1 2 3 4 5 6 7
a

Σ− a

b

×

a

×

b

×

a

×

c

×

a

×

Σ

T : a b a b a b b c a b a b a c a
a b a b a ×

(a) (b) (a) b ×
(a) (b) ×

×
×

a b a b a c a

state: 1 2 3 4 5 3, 4 2, 0 0 1 2 3 4 5 6 7
(after reading this character)
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String matching with KMP – Failure-function
Assume we reach state j+1 and now have mismatch.

T : ...matched P[0..j]...
current guess ......P[0..j]...... ×

shift by 1? .....P[0..j−1]....
shift by 2? ....P[0..j−2]...
Can eliminate “shift by 1” if P[1..j] 6= P[0..j−1].
Can eliminate “shift by 2” if P[1..j] does not end with P[0..j−2].
Generally eliminate guess if that prefix of P is not a suffix of P[1..j].
So want longest prefix P[0..`−1] that is a suffix of P[1..j].
The ` characters of this prefix are matched, so go to state `.

F [j] = head of failure-arc from state j+1
= length of the longest prefix of P that is a suffix of P[1..j].
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KMP Failure Array – Example

F [j] is the length of the longest prefix of P that is a suffix of P[1..j].

Consider P = ababaca

j P[1..j] Prefixes of P longest F [j]
0 Λ Λ, a, ab, aba, abab, ababa, . . . Λ 0
1 b Λ, a, ab, aba, abab, ababa, . . . Λ 0
2 ba Λ, a, ab, aba, abab, ababa, . . . a 1
3 bab Λ, a, ab, aba, abab, ababa, . . . ab 2
4 baba Λ, a, ab, aba, abab, ababa, . . . aba 3
5 babac Λ, a, ab, aba, abab, ababa, . . . Λ 0
6 babaca Λ, a, ab, aba, abab, ababa, . . . a 1

This can clearly be computed in O(m3) time, but we can do better!
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Computing the Failure Array

KMP::failureArray(P)
P: String of length m (pattern)
1. F [0]← 0
2. j ← 1 // index within parsed text
3. `← 0 // reached state
4. while j < m do
5. if P[j] = P[`]
6. `← `+ 1
7. F [j]← `
8. j ← j + 1
9. else if ` > 0
10. `← F [`− 1]
11. else
12. F [j]← 0
13. j ← j + 1

Correctness-idea: F [j] is defined via pattern matching of P in P[1..j].
So KMP uses itself! Already-built parts of F [·] are used to expand it.
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KMP – Runtime

failureArray
Consider how 2j − ` changes in each iteration of the while loop

I j and ` both increase by 1 ⇒ 2j − ` increases –OR–
I ` decreases (F [`− 1] < `) ⇒ 2j − ` increases –OR–
I j increases ⇒ 2j − ` increases

Initially 2j − ` ≥ 0, at the end 2j − ` ≤ 2m
So no more than 2m iterations of the while loop.
Running time: Θ(m)

KMP main function
failureArray can be computed in Θ(m) time
Same analysis gives at most 2n iterations of the while loop since
2i − j ≤ 2n.
Running time KMP altogether: Θ(n + m)
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Boyer-Moore Algorithm

Fastest pattern matching on English text.

Important components:
Reverse-order searching: Compare P with a guess moving backwards

When a mismatch occurs, choose the better of the following two options:
Bad character jumps: Eliminate guesses based on mismatched
characters of T .
Good suffix jumps: Eliminate guesses based on matched suffix of P.
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Forward-searching vs. reverse-searching

P: aldo
T : whereiswaldo

Forward-searching:
w h e r e i s w a l d o

a
a

a

w does not occur in P.
⇒ shift pattern past w.
h does not occur in P.
⇒ shift pattern past h.

With forward-searching, no guesses
are ruled out.

Reverse-searching:
w h e r e i s w a l d o

o
o

a l d o

r does not occur in P.
⇒ shift pattern past r.
w does not occur in P.
⇒ shift pattern past w.

This bad character heuristic works
well with reverse-searching.
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Bad character heuristic details
P : p a p e r
T : f e e d a l l p o o r p a r r o t s

r
[a] r

[p] r
e r

Mismatched character in the text is a
Shift the guess until a in P aligns with a in T

I All skipped guessed are impossible since they do not match a

Shift the guess until last p in P aligns with p in T
I Use “last” since we cannot rule out this guess.

As before, shift completely past o since o is not in P.

Finding r does not help ⇒ shift by one unit.
I Here the other strategy will do better.
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Last-Occurrence Array

Build the last-occurrence array L mapping Σ to integers
L[c] is the largest index i such that P[i ] = c
We will see soon: If c is not in P, then we should set L[c] = −1

Pattern:
0 1 2 3 4
p a p e r

Last-Occurrence Array:
char p a e r all others
L[·] 2 1 3 4 −1

We can build this in time O(m + |Σ|) with simple for-loop
BoyerMoore::lastOccurrenceArray(P[0..m−1])
1. initialize array L indexed by Σ with all −1
2. for j ← 0 to m−1 do L[P[j]]← j
3. return L

But how should we do the update?
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Bad character heuristic formula
We will always compare T [i ] and P[j]. How to update at a mismatch?
“Good” case: L[c] < j , so c is left of P[j].

text: c
iold

inew

pattern: c
L[c] jold

∆1 ∆1∆2
m−1

c

jnew

jnew = m−1 (we re-start the search from the right end)
inew = corresponding index in T . What is it?

I ∆1 = amount that we should shift = jold − L[c]
I ∆2 = how much we had compared = (m−1)− jold

I inew = iold + ∆2 + ∆1 = iold + (m−1)− L[c]
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Bad character heuristic formula

Bad case 1: c does not occur in P.

c
iold inew

jold
m

jold

jnew

We want to shift past T [iold], so need inew = iold + m
What value of L[c] would achieve this automatically?

I formula was inew = iold + (m−1)− L[c]
⇒ set L[c] := −1
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Bad character heuristic formula
Bad case 2: L[c] > j , so c is right of P[j].

c
iold inew

c
jold

∆1 ∆1∆2
m−1jold

Bad character heuristic not helpful in this case.
We want to shift by ∆1 := 1 units

inew = iold + ∆2 + ∆1 = iold + 1 + (m−1)− jold

Unified formula for all cases: inew = iold + (m−1)−min
{
L[c], jold−1

}
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Boyer-Moore Algorithm

Boyer-Moore::patternMatching(T,P)
1. L← lastOccurrenceArray(P)
2. S ← good suffix array computed from P
3. i ← m − 1, j ← m − 1
4. while i < n and j ≥ 0 do

// current guess begins at index i − j
5. if T [i ] = P[j]
6. i ← i − 1
7. j ← j − 1
8. else
9. i ← i + m−1−min{L[T [i ]], j−1}
10. j ← m − 1
11. if j = −1 return “found at T [i+1..i+m]”
12. else return FAIL

If good suffix heuristic is used, then line 9 should be
i ← i + m−1−min{L[T [i ]],S[j]}

where S will be explained below.
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Good Suffix Heuristic
S[j] expresses

“since P[j+1..m−1] was matched, how much should we shift?”

P : o n o b o b o
T : o n o o o b o o o i b b o u n d a r y

b o b o
Do smallest shift so that obo fits in the new guess.

(o) (b) (o)

Doing examples is easy, but the formula is complicated (no details)
S[·] computable (similar to KMP failure function) in Θ(m) time.

Summary:
Boyer-Moore performs very well (even without good suffix heuristic).
On typical English text Boyer-Moore looks at only ≈ 25% of T
Worst-case run-time for is O(mn), but in practice much faster.
[There are ways to ensure O(n) run-time. No details.]
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Tries of Suffixes and Suffix Trees

What if we want to search for many patterns P within the same fixed
text T?
Idea: Preprocess the text T rather than the pattern P
Observation: P is a substring of T if and only if P is a prefix of some
suffix of T .
So want to store all suffixes of T in a trie.
To save space:

I Use a compressed trie.
I Store suffixes implicitly via indices into T .

This is called a suffix tree.
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Trie of suffixes: Example
T = bananaban has suffixes
{bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n, Λ}

$

$

aban$
$na

b
an$$

anaban$
$na

b

ananaban$
$naba

n
a

n

a

ban$$

bananaban$
$naban

a
na

b

n$$
naban$

$na
b

nanaban$
$naba

n
a

n
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Tries of suffixes
Store suffixes via indices: 0 1 2 3 4 5 6 7 8 9

T = b a n a n a b a n $

T[9..9]

$

T[5..9]
$na

b
T[7..9]$

T[3..9]
$na

b

T[1..9]
$naba

n
a

n

a

T[6..9]$

T[0..9]
$naban

a
na

b

T[8..9]$
T[4..9]

$na
b

T[2..9]
$naba

n
a

n
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Suffix tree
Suffix tree: Compressed trie of suffixes

0 1 2 3 4 5 6 7 8 9
T = b a n a n a b a n $

0

T[9..9]

$ 1
T[5..9]b

2
T[7..9]$

3
T[3..9]b

T[1..9]
n

a
n

a

3
T[6..9]$

T[0..9]
a

b

1
T[8..9]$

2
T[4..9]b

T[2..9]
n

a

n
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More on Suffix Trees

Building:
Text T has n characters and n + 1 suffixes
We can build the suffix tree by inserting each suffix of T into a
compressed trie. This takes time Θ(n2|Σ|).
There is a way to build a suffix tree of T in Θ(n|Σ|) time.
This is quite complicated and beyond the scope of the course.

Pattern Matching:
Essentially search for P in compressed trie.
Some changes are needed, since P may only be prefix of stored word.
Run-time: O(|Σ|m).

Summary: Theoretically good, but construction is slow or complicated,
and lots of space-overhead  rarely used.
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Suffix Arrays

Relatively recent development (popularized in the 1990s)
Sacrifice some performence for simplicity:

I Slightly slower (by a log-factor) than suffix trees.
I Much easier to build.
I Much simpler pattern matching.
I Very little space; only one array.

Idea:
Store suffixes implicitly (by storing start-indices)
Store sorting permutation of the suffixes of T .
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Suffix Array Example
0 1 2 3 4 5 6 7 8 9

Text T : b a n a n a b a n $

i suffix T [i ..n−1]
0 bananaban$
1 ananaban$
2 nanaban$
3 anaban$
4 naban$
5 aban$
6 ban$
7 an$
8 n$
9 $

−→
sort lexicographically

j As [j]
0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$
5 6 ban$
6 0 bananaban$
7 8 n$
8 4 naban$
9 2 nanaban$

0 1 2 3 4 5 6 7 8 9
Suffix array: 9 5 7 3 1 6 0 8 4 2
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Suffix Array Construction
Easy to construct using MSD-Radix-Sort.

I Fast in practice; suffixes are unlikely to share many leading characters.
I But worst-case run-time is Θ(n2)

F n rounds of recursions (have n chars)
F Each round takes Θ(n) time (bucket-sort)

Idea: We do not need n rounds! I Consider sub-array after one round.
I These have same leading char. Ties are broken by rest of words.
I But rest of words are also suffixes  sorted elsewhere
I We can double length of sorted part every round.


I O(log n) rounds enough ⇒ O(n log n) run-time

Construction-algorithm: MSD-radix-sort plus some bookkeeping
I needs only one extra array
I easy to implement

You do not need to know details ( cs482).
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Pattern matching in suffix arrays
Suffix array stores suffixes (implicitly) in sorted order.
Idea: apply binary search!

P =ban:
j As [j] T [As [j]..n−1]

`→ 0 9 $
1 5 aban$
2 7 an$
3 3 anaban$

ν → 4 1 ananaban$
5 6 ban$
6 0 bananaban$
7 8 n$
8 4 naban$

r → 9 2 nanaban$

O(log n) comparisons.
Each comparison is strcmp(P,T [As [ν]..As [ν] + m − 1])
O(m) time per comparison ⇒ run-time O(m log n)

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 38 / 40



Pattern matching in suffix arrays
Suffix array stores suffixes (implicitly) in sorted order.
Idea: apply binary search!

P =ban:
j As [j] T [As [j]..n−1]
0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$

`→ 5 6 ban$
6 0 bananaban$

ν → 7 8 n$
8 4 naban$

r → 9 2 nanaban$

O(log n) comparisons.
Each comparison is strcmp(P,T [As [ν]..As [ν] + m − 1])
O(m) time per comparison ⇒ run-time O(m log n)

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 38 / 40



Pattern matching in suffix arrays
Suffix array stores suffixes (implicitly) in sorted order.
Idea: apply binary search!

P =ban:
j As [j] T [As [j]..n−1]
0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$

ν=`→ 5 6 ban$ found
r → 6 0 bananaban$

7 8 n$
8 4 naban$
9 2 nanaban$

O(log n) comparisons.
Each comparison is strcmp(P,T [As [ν]..As [ν] + m − 1])
O(m) time per comparison ⇒ run-time O(m log n)

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 38 / 40



Pattern matching in suffix arrays
Suffix array stores suffixes (implicitly) in sorted order.
Idea: apply binary search!

P =ban:
j As [j] T [As [j]..n−1]
0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$

ν=`→ 5 6 ban$ found
r → 6 0 bananaban$

7 8 n$
8 4 naban$
9 2 nanaban$

O(log n) comparisons.
Each comparison is strcmp(P,T [As [ν]..As [ν] + m − 1])
O(m) time per comparison ⇒ run-time O(m log n)

Hunt, Veksler (CS-UW) CS240 – Module 9 Winter 2023 38 / 40



Pattern matching in suffix arrays

SuffixArray::patternMatching(T ,P,As [0...n−1]
As : suffix array of T
1. `← 0, r ← n − 1
2. while (` < r)

3. ν ← b `+r
2 c

4. i ← As [ν] // Suffix is T [i ..n−1]
5. s ← strcmp(P,T [i ..i+m−1])
6. // Assuming strcmp handles “out of bounds” suitably
7. if (s > 0) do `← ν + 1
8. else if (s < 0) do r ← ν − 1
9. else return “found at guess T [i ..i+m−1]”
10. if strcmp(P,T [As [`]..As [`]+m−1]) = 0
11. return “found at guess T [As [`]..As [`]+m−1]”
12. return FAIL
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String Matching Conclusion

Brute-
Force

Karp-
Rabin DFA Knuth-

Morris-
Pratt

Boyer-
Moore

Suffix
Tree

Suffix
Array

Preproc. — O(m) O(m|Σ|) O(m) O(m+|Σ|) O(n2|Σ|) O(n log n)
[O(n|Σ|)] [O(n)]

Search
time

O(nm) O(n+m)
expected

O(n) O(n) O(n) or
better

O(m) O(m log n)
[O(m + log n)]

Extra — O(1) O(m|Σ|) O(m) O(m+|Σ|) O(n) O(n)space

Our algorithms stopped once they have found one occurrence.
Most of them can be adapted to find all occurrences within the same
worst-case run-time.
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