
CS 240 – Data Structures and Data Management

Module 9: String Matching

A. Hunt and O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

Outline

 String Matching

 Introduction

 Karp-Rabin Algorithm

 Knuth-Morris-Pratt algorithm

 Boyer-Moore Algorithm

 Suffix Trees

 Suffix Arrays

 Conclusion

Pattern Matching Definitions [1]
 Search for a string (pattern) in a large body of text

 𝑇[0. . . 𝑛 − 1] text (or haystack) being searched

 𝑃[0…𝑚 − 1] pattern (or needle) being searched for

 Strings over alphabet Σ

 Return the first occurrence of 𝑃 in 𝑇

 Example

𝑇 = L i t t l e p i g l e t s c o o k e d f o r m o t h e r p i g

𝑃 = p i g

𝑛 = 36, 𝑚 = 3, 𝑖 = 7

 return smallest 𝑖 such that

𝑇 [𝑖 + 𝑗] = 𝑃 𝑗 for 0 ≤ 𝑗 ≤ 𝑚 − 1

 If 𝑃 does not occur in 𝑇, return FAIL

 Applications

 information retrieval (text editors, search engines), bioinformatics, data mining

7
 +

 0
7

 +
 1

7
 +

 2

More Definitions [2]

 Substring 𝑇 𝑖. . . 𝑗 0 ≤ 𝑖 ≤ 𝑗 < 𝑛 is a string consisting of characters
𝑇 𝑖 , 𝑇 𝑖 + 1 , . . . , 𝑇[𝑗]

 length is 𝑗 − 𝑖 + 1

antidisestablishmentarianism

 Prefix of 𝑇 is a substring 𝑇 [0. . . 𝑖] of 𝑇 for some 0 ≤ 𝑖 ≤ 𝑛 − 1

 Suffix of 𝑇 is a substring 𝑇 [𝑖. . . 𝑛 − 1] of 𝑇 for some 0 ≤ 𝑖 ≤ 𝑛 − 1

 With this definition, prefix and suffix are never empty strings

 sometimes want to allow empty string prefix and suffix

antidisestablishmentarianismantidisestablishmentarianismantidisestablishmentarianism

General Idea of Algorithms

 Pattern matching algorithms consist of guesses and checks

 a guess or shift is a position 𝑖 such that 𝑃 might start at 𝑇[𝑖]

 valid guesses (initially) are 0 ≤ 𝑖 ≤ 𝑛 −𝑚

guess at 𝑖 = 0

abbbababbab

abba

guess at 𝑖 = 1
abbbababbab

abba

guess at 𝑖 = 6

abbbababbab

abba

guess at 𝑖 = 7

abbbababbab

abba

check at 𝑗 = 0 check at 𝑗 = 1

 a check of a guess is a single position 𝑗 with 0 ≤ 𝑗 < 𝑚 where we
compare 𝑇 [𝑖 + 𝑗] to 𝑃[𝑗]

abbbababbab

abba

 must perform 𝑚 checks of a single correct guess

 may make fewer checks of an incorrect guess

abbbababbab

abba

…

Diagrams for Matching

 Diagram single run of pattern matching algorithm by matrix of checks

 each row represents a single guess

a b b b a b a b b a b
a b b a

Brute-Force Algorithm: Example
Example: 𝑇 = abbbababbab, 𝑃 = abba

a b b b a b a b b a b

 Worst possible input

 𝑃 = 𝑎…𝑎𝑏, 𝑇 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎…𝑎𝑎𝑎𝑎𝑎𝑎𝑎

a b b a
a

a

a

a b b

a

a b b a

 Have to perform (𝑛 − 𝑚 + 1)𝑚 checks, which is Θ((𝑛 − 𝑚)𝑚) runtime

 this is Θ(𝑛𝑚) if 𝑚 ≤ 𝑛/2

 worst running time if 𝑚 = 𝑛/2

 Θ(𝑛2)

𝑚− 1 times 𝑛 times

guess 𝑖 = 1
check 𝑗 = 0guess 𝑖 = 0

check 𝑗 = 3

Brute-force Algorithm

Bruteforce::PatternMatching(𝑇 [0. . 𝑛 − 1], 𝑃[0. .𝑚 − 1])

𝑇 : String of length n (text), 𝑃: String of length m (pattern)

for 𝑖 ← 0 to 𝑛 − 𝑚 do

if strcmp(𝑇 [𝑖 … 𝑖 + 𝑚 − 1], 𝑃) = 0

return “found at guess 𝑖”

return FAIL

 Note: strcmp takes Θ(𝑚) time

strcmp(𝑇 [𝑖 … 𝑖 + 𝑚 − 1], 𝑃[0. . . 𝑚 − 1])

for 𝑗 ← 0 to 𝑚 − 1 do

if 𝑇 [𝑖 + 𝑗] is before 𝑃[𝑗] in Σ then return -1

if 𝑇 [𝑖 + 𝑗] is after 𝑃[𝑗] in Σ then return 1

return 0

 Checks every possible guess

How to improve?

 Extra preprocessing on pattern 𝑃

 Karp-Rabin

 KMP

 Boyer-Moore

 Eliminate guesses based on completed matches and mismatches

 Do extra preprocessing on the text T

 Suffix-trees

 Suffix-arrays

 Create a data structure to find matches easily

Outline

 String Matching

 Introduction

 Karp-Rabin Algorithm

 Knuth-Morris-Pratt algorithm

 Boyer-Moore Algorithm

 Suffix Trees

 Suffix Arrays

 Conclusion

Karp-Rabin Fingerprint Algorithm: Idea
 Hash functions are useful not just for hash tables!

 Idea: use hashing to eliminate guesses faster

 compute hash function for each guess, compare with pattern hash

 Example: 𝑃 = 5 9 2 6 5, 𝑇 = 3 1 4 1 5 9 2 6 5 3 5

 standard hash function: flattening + modular (radix 𝑅 = 10):

3 1 4 1 5 9 2 6 5 3 5

ℎ(59265) =

ℎ(31415) = 84

ℎ(14159) = 94

ℎ(41592) = 76

ℎ(15926) = 18

ℎ(59265) = 95

hash-value 84

hash-value 94

hash-value 76

hash-value 18

hash-value 95

 if values are unequal, then current guess cannot match the pattern

 if values are equal, verify that pattern actually matches text

 equal hash value does not guarantee equal keys

 although if hash function is good, most likely keys are equal

 𝑂(𝑚) time to verify, but happens rarely, and most likely only for true match

(5 ∙ 104 + 9 ∙ 103 + 2 ∙ 102 + 6 ∙ 101 + 5) 𝑚𝑜𝑑 97= 59265 𝑚𝑜𝑑 97 = 95

Karp-Rabin Fingerprint Algorithm – First Attempt

Karp-Rabin-Simple::patternMatching(𝑇, 𝑃)

ℎ𝑃 ← ℎ(𝑃[0. .𝑚 − 1)])

for 𝑖 ← 0 to 𝑛 − 𝑚

ℎ𝑇 ← ℎ(𝑇 [𝑖. . . 𝑖 + 𝑚 − 1])

if ℎ𝑇 = ℎ𝑃

if strcmp(𝑇 [𝑖 … 𝑖 + 𝑚 − 1], 𝑃) = 0

return “found at guess 𝑖”

return FAIL

 Algorithm correctness: match is not missed

 ℎ(𝑇 [𝑖. . 𝑖 + 𝑚 − 1]) ≠ ℎ(𝑃) ⇒ guess 𝑖 is not 𝑃

 What about running time?

Θ(𝑚)

Karp-Rabin Fingerprint Algorithm: First Attempt

3 1 4 1 5 9 2 6 5 3 5

hash-value 84

hash-value 94

hash-value 76

hash-value 18

hash-value 95

Θ(𝑚)

Θ(𝑚)

Θ(𝑚)

Θ(𝑚)

Θ(𝑚)

 For each shift, Θ(𝑚) time to compute hash value

 since ℎ(𝑇[𝑖. . . 𝑖 + 𝑚 − 1]) depends on all 𝑚 characters

 worse than brute-force!
 it is possible for brute force matching to use less than Θ(𝑚) per

shift, as it stops at the first mismatched character

 𝑛 −𝑚 + 1 shifts in text to check

 Total time is Θ(𝑚𝑛) if pattern not in text

 how can we improve this?

Karp-Rabin Fingerprint Algorithm: Idea
3 1 4 1 5 9 2 6 5 3 5

hash-value 84

hash-value 94

hash-value 76

hash-value 18

hash-value 95

Θ(𝑚)

𝑂(1)

𝑂(1)

𝑂(1)

𝑂(1)

 Idea: compute next hash from previous one in 𝑂(1) time

 𝑛 −𝑚 + 1 shifts in text to check

 Θ(𝑚) to compute the first hash value

 𝑂(1) to compute all other hash values

 Θ 𝑛 +𝑚 expected time
 recall that we still need to check if the pattern actually matches text whenever hash

value of text is equal to the hash value of pattern

 if hash function is good, then whenever hash values are equal, pattern most likely
matches the text

Karp-Rabin Fingerprint Algorithm – Fast Rehash
 For historical reasons, hashes are called fingerprints

 Insight: can update a fingerprint from previous fingerprint in constant time

 𝑂(1) time to compute any hash, except first one

 Example

T = 4 1 5 9 2 6 5 3 5, 𝑃 = 5 9 2 6 5

 Algebraically,

4 1 5 9 2

41592 − 4 · 10000 · 10 + 6 = 15926

41592
−4 · 10000

1592
× 10

15920
+6

15926

 Initialization of the algorithm

1. compute first hash: ℎ 41592 = 41592 𝑚𝑜𝑑 97 = 76 [Θ(𝑚) time]

2. also compute 10000 𝑚𝑜𝑑 97 = 9

 Main loop: repeatedly compute next hash from the previous one

 Example: compute 15926 𝑚𝑜𝑑 97 from 41592 𝑚𝑜𝑑 97

 get rid of the old first digit and add new last digit

Karp-Rabin Fingerprint Algorithm – Fast Rehash
 Insight: can update a fingerprint from previous fingerprint in constant time

 Example

T = 4 1 5 9 2 6 5 3 5, 𝑃 = 5 9 2 6 54 1 5 9 2
 Initialization of the algorithm

1. compute first hash: ℎ 41592 = 41592 𝑚𝑜𝑑 97 = 76 [Θ(𝑚) time]

2. also compute 10000 𝑚𝑜𝑑 97 = 9

 Main loop: repeatedly compute next hash from the previous one

 Example: compute 15926 𝑚𝑜𝑑 97 from 41592 𝑚𝑜𝑑 97

41592 − 4 · 10000 · 10 + 6 = 15926

15926 𝑚𝑜𝑑 97

(41592 𝑚𝑜𝑑 97 − 4 · (10000 𝑚𝑜𝑑 97) · 10 + 6) 𝑚𝑜𝑑 97 = 15926 𝑚𝑜𝑑 97

previous hash precomputed

76 − 4 · 9 · 10 + 6 𝑚𝑜𝑑 97 = 15926 𝑚𝑜𝑑 97

constant number of operations, independent of 𝑚

(41592 − 4 · 10000 · 10 + 6) 𝑚𝑜𝑑 97 =

18 = 15926 𝑚𝑜𝑑 97

Karp-Rabin Fingerprint Algorithm – Conclusion
Karp-Rabin-RollingHash::PatternMatching(𝑇 , 𝑃)

𝑀 ← suitable prime number

ℎ𝑃 ← ℎ(𝑃[0. . . 𝑚 − 1)])

ℎ𝑇 ← ℎ(𝑇 [0. .𝑚 − 1)])

𝑠 ← 10𝑚−1𝑚𝑜𝑑 𝑀

for 𝑖 ← 0 to 𝑛 −𝑚

if ℎ𝑇 = ℎ𝑃

if strcmp(𝑇 [𝑖 … 𝑖 + 𝑚 − 1], 𝑃) = 0

return “found at guess 𝑖”

if 𝑖 < 𝑛 − 𝑚 // compute hash-value for next guess

ℎ𝑇 ← ℎ𝑇 − 𝑇 𝑖 · 𝑠 · 10 + 𝑇 𝑖 + 𝑚 𝑚𝑜𝑑 𝑀

return FAIL

 Choose “table size” 𝑀 at random to be prime in {2, … ,𝑚𝑛2}

 Expected running time is 𝑂(𝑚 + 𝑛)

 Θ(𝑚𝑛) worst-case, but this extremely is unlikely

 Improvement: reset 𝑀 if no match at ℎ𝑇 = ℎ𝑃

Outline

 String Matching
 Introduction
 Karp-Rabin Algorithm
 Knuth-Morris-Pratt algorithm
 Boyer-Moore Algorithm
 Suffix Trees
 Suffix Arrays
 Conclusion

Knuth-Morris-Pratt (KMP) Overview

𝑇

 KMP starts out similar to Brute-Force pattern matching

𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a a b a b
a mismatch at the first pattern letter,

move to the next shift
a

letter matches the text, move
on to the next check

b a b a c

mismatch at not the first pattern
letter, do something different from
Brute Force

Knuth-Morris-Pratt (KMP) Indexing

 KMP indexing

 maintain variables 𝑖 and 𝑗

 𝑗 is the position in the pattern

 𝑖 is the position in the text where we
do the next check

 check is performed by determining if
𝑇 𝑖 = 𝑃 𝑗

 current shift is 𝑖 − 𝑗

𝑇

𝑃 = 𝑐𝑎𝑑

c a b a b

𝒋=𝟎
𝒊=𝟎

c
𝑇 c a b a b

𝒋=𝟎

c

 Brute-force indexing

 maintain variables 𝑖 and 𝑗

 𝑗 is the position in the pattern

 𝑖 is equal to the current shift

 check is performed by
determining if 𝑇 𝑖 + 𝑗 = 𝑃 𝑗

a

𝒋=𝟏

b

𝒋=𝟐

𝒊=𝟎

𝒋=𝟏
𝒊=𝟏

a

𝒋=𝟐
𝒊=𝟐

b

Knuth-Morris-Pratt (KMP) Derivation

 KMP starts similar to brute force pattern matching

 maintain variables 𝑖 and 𝑗

 𝑗 is the position in the pattern

 𝑖 is the position in the text where we do the check

 check is performed by determining if 𝑇 𝑖 = 𝑃 𝑗

 current shift is 𝑖 − 𝑗

𝑇

𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 Begin matching with 𝑖 = 0, 𝑗 = 0

c a b a b a a b a b

𝒋=𝟎
𝒊=𝟎

a

 If 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 = 0, shift pattern by 1, the same action as in brute-force
 𝑖 = 𝑖 + 1

 𝑗 is unchanged

 shift was 𝑖 − 𝑗 and it changes to 𝑖 + 1 − 𝑗

 it increases by 1 as needed

Knuth-Morris-Pratt Motivation

 When 𝑇[𝑖] = 𝑃[𝑗], the action is to check the next letter, as in brute-force

 𝑖 = 𝑖 + 1

 𝑗 = 𝑗 + 1

 shift was 𝑖 − 𝑗 and it stays unchanged

𝑇

𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a a b a b

a

a b a b a c

 Failure at text position 𝑖 = 6, pattern position 𝑗 = 5

 When failure is at pattern position 𝑗 > 0, do something smarter than brute force

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟎
𝒊=𝟎

Knuth-Morris-Pratt Motivation

𝑇

𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a a b a b

a

a cb a b a

 When failure is at pattern position 𝑗 > 0, do something smarter than brute force

 Prior to 𝑗 = 5, pattern and text are equal

 find how to shift pattern looking only at pattern

shift by 1 does not worka

a b a shift by 2 could work

 If failure at 𝑗 = 5, shift pattern by 2 and start matching with 𝑗 = 3

 equivalently: 𝑖 stays the same, new 𝑗 = 3

 old shift was 𝑖 − 5, the new shift is 𝑖 − 3, so shift increased by 2

 skipped one shift, and 3 character checks

 can precompute the action of ‘shift by 2 and skip 3 characters’ before matching
even begins, from the pattern, as we do not need text for this computation

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟎
𝒊=𝟎

Knuth-Morris-Pratt Motivation

𝑇

𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a a b a b

a

a cb a b a

 If failure at 𝑗 = 5: continue matching with the same 𝑖 and new 𝑗 = 3

 precomputed from pattern before matching begins

shift by 1 does not worka

a b a shift by 2 could work

prefix of 𝑃

𝑷[𝟏… 𝒋 − 𝟏]

 Brief rule for determining new 𝑗

 find longest suffix of 𝑃 1… 𝑗 − 1 which is also prefix of 𝑃

 call a suffix valid if it is a prefix of 𝑃

 new 𝑗 = the length of the longest valid suffix of 𝑃 1… 𝑗 − 1

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟎
𝒊=𝟎

KMP Failure Array Computation: Slow

 Rule: if failure at pattern index 𝑗 > 0, continue matching with the same 𝑖 and
new 𝑗 = the length of the longest valid suffix of 𝑃 1… 𝑗 − 1

 Computed previously for 𝑗 = 5, but need to compute for all 𝑗

 Store this information in array 𝐹 0. . . 𝑚 − 1 , also called failure-function

 𝐹[𝑗] is length of the longest valid suffix of 𝑃[1. . . 𝑗]

 if failure at pattern index 𝑗 > 0, new 𝑗 = 𝐹[𝑗 − 1]

 We could have indexed failure array 𝐹 differently

 𝐹[𝑗] is length of the longest valid suffix of 𝑃[1. . . 𝑗 − 1]

 if failure at pattern index 𝑗 > 0, new 𝑗 = 𝐹[𝑗]

 But then we have to remember, when computing 𝐹[𝑗] that

 𝐹[𝑗] is length of the longest valid suffix of 𝑃[1. . . 𝑗 − 1]

 inconvenient to remember

KMP Failure Array Computation: Slow
 Rule: if failure at pattern index 𝑗 > 0, continue matching with the same 𝑖 and

new 𝑗 = the length of the longest valid suffix of 𝑃 1… 𝑗 − 1

 Store the length of the longest valid suffix of 𝑃 1… 𝑗 in 𝐹 𝑗

 If failure at pattern index 𝑗 > 0, new 𝑗 = 𝐹[𝑗 − 1]

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎 0 1 2 3 4 5 6

100
𝐹

 note that 𝐹[0] = 0 for any pattern

 𝑗 = 1

 𝑃[1…1] = 𝑏, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is “”
 𝑗 = 2

 𝑃[1…2] = 𝑏𝑎, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is 𝑎

 𝑗 = 0

 𝑃[1…0] = “”, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is “”

KMP Failure Array Computation: Slow

0 1 2 3 4 5 6

32100
𝐹

0 1

 Failure array is precomputed before matching starts

 straightforward computation is 𝑂(𝑚3) time

for 𝑗 = 0 to 𝑚 − 1 // go over all positions in the failure array

for 𝑖 = 1 to 𝑗 // go over all suffixes of 𝑃[1… 𝑗]

for 𝑘 = 1 to 𝑖 // compare next suffix to prefix of 𝑃

 𝑗 = 5

 𝑃[1…5] = 𝑏𝑎𝑏𝑎𝑐 , 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is “”

 𝑗 = 6

 𝑃[1…6] = 𝑏𝑎𝑏𝑎𝑐𝑎, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is 𝑎

 Store the length of the longest valid suffix of 𝑃 1… 𝑗 in 𝐹 𝑗

 𝑗 = 4

 𝑃[1…4] = 𝑏𝑎𝑏𝑎 , 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is 𝑎𝑏𝑎

 𝑗 = 3

 𝑃[1…3] = 𝑏𝑎𝑏 , 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is 𝑎𝑏

String matching with KMP: Example

 𝑇 = 𝑐𝑎𝑏𝑎𝑏𝑎𝑏𝑐𝑎𝑏𝑎𝑏𝑎𝑐𝑎, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a b c a b a b a c a𝑇:

𝑃:

0 1 2 3 4 5 6

32100
𝐹

0 1

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 = 0
 𝑖 = 𝑖 + 1

 𝑗 is unchanged

if 𝑇[𝑖] = 𝑃[𝑗]

 𝑖 = 𝑖 + 1

 𝑗 = 𝑗 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 > 0
 𝑖 unchanged

 𝑗 = 𝐹[𝑗 − 1]

𝒊=𝟎
𝒋=𝟎

rule 1 rule 2 rule 3

String matching with KMP: Example
 𝑇 = 𝑐𝑎𝑏𝑎𝑏𝑎𝑏𝑐𝑎𝑏𝑎𝑏𝑎𝑐𝑎, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a b c a b a b a c a𝑇:

𝑃:

0 1 2 3 4 5 6

32100
𝐹

0 1

𝒂

𝒋=𝟎
𝒊=𝟎

a b a b a c

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

new 𝑗 = 3

(a) (b) (a)

𝒋=𝟑

b

𝒋=𝟒
𝒊=𝟕

a new 𝑗 = 2

𝒋=𝟐

(a) (b) a

𝒋=𝟎

new 𝑗 = 0

a

𝒋=𝟎
𝒊=𝟖

a

𝒋=𝟏
𝒊=𝟗

b

𝒋=𝟐
𝒊=𝟏𝟎

a

𝒋=𝟑
𝒊=𝟏𝟏

b

𝒋=𝟒
𝒊=𝟏𝟐

a

𝒋=𝟓
𝒊=𝟏𝟑

c

𝒋=𝟔
𝒊=𝟏𝟒

a match!

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 = 0
 𝑖 = 𝑖 + 1

 𝑗 is unchanged

if 𝑇[𝑖] = 𝑃[𝑗]

 𝑖 = 𝑖 + 1

 𝑗 = 𝑗 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 > 0
 𝑖 unchanged

 𝑗 = 𝐹[𝑗 − 1]

Knuth-Morris-Pratt Algorithm

KMP 𝑇, 𝑃
𝐹 ← 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝐴𝑟𝑟𝑎𝑦 𝑃
𝑖 ← 0 // current character of 𝑇
𝑗 ← 0 // current character of 𝑃
while 𝑖 < 𝑛 do

if 𝑃[𝑗] = 𝑇[𝑖]
if 𝑗 = 𝑚 − 1

return “found at shift 𝑖 − 𝑚 + 1”
// shift is equal to 𝑖 − 𝑗

else // rule 1
𝑖 ← 𝑖 + 1
𝑗 ← 𝑗 + 1

else // 𝑃[𝑗] ≠ 𝑇 [𝑖]
if 𝑗 > 0

𝑗 ← 𝐹[𝑗 − 1] // rule 2
else // rule 3

𝑖 ← 𝑖 + 1
return 𝐹𝐴𝐼𝐿

KMP: Running Time, informally

 For now, ignore the cost of computing failure array

 Total time = ‘horizontal iterations’ + ‘vertical iterations’

c a b a b a b c a b a b a c a𝑇:

𝑃:

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 = 0
 𝑖 = 𝑖 + 1

 𝑗 is unchanged

if 𝑇[𝑖] = 𝑃[𝑗]

 𝑖 = 𝑖 + 1

 𝑗 = 𝑗 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 > 0
 𝑖 unchanged

 𝑗 = 𝐹[𝑗 − 1]

𝒋=𝟎
𝒊=𝟎

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟑

𝒋=𝟒
𝒊=𝟕

𝒋=𝟐

𝒋=𝟎

𝒋=𝟎
𝒊=𝟖

𝒋=𝟏
𝒊=𝟗

𝒋=𝟐
𝒊=𝟏𝟎

𝒋=𝟑
𝒊=𝟏𝟏

𝒋=𝟒
𝒊=𝟏𝟐

𝒋=𝟓
𝒊=𝟏𝟑

𝒋=𝟔
𝒊=𝟏𝟒

 Total number of decreases of 𝑗 ≤ total number of increases of 𝑗

0 1 2 3 4 5 6

32100
𝐹

0 1

≤ 𝑛

 𝑂(𝑛) total iterations, more formal analysis later

𝑖 increases

𝑗 decreases

 𝑖 can increase at most 𝑛 times → 𝑗 can increase at most 𝑛 times

Fast Computation of 𝐹
 Failure array 𝐹

 𝐹 0 = 0, no need to compute

 for 𝑗 > 0, 𝐹 𝑗 = length of the longest suffix of 𝑃[1. . . 𝑗] which is also prefix of 𝑃

 i.e. 𝐹 𝑗 = longest valid suffix of 𝑃 1… 𝑗

 Crucial fact: after processing 𝑇, final value of 𝑗 is longest valid suffix of 𝑇

P = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎
c a b a

𝒂

a b a

𝑇:

𝑃:

𝒋=𝟎
𝒊=𝟎

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

a b a

 Use the crucial fact for computation of 𝐹

 match 𝑇 = 𝑃 1…1 with 𝑃, and set 𝐹[1] = final 𝑗

 match 𝑇 = 𝑃 1…2 with 𝑃, and set 𝐹[2] = final 𝑗

 …

 match 𝑇 = 𝑃 1…𝑚 − 1 with 𝑃, and set 𝐹[𝑚 − 1] = final 𝑗

 but first, let us rename variable 𝑗 as 𝑙 (only for failure array computation)

 since 𝑗 is already used when we take 𝑇 = 𝑃 1… 𝑗

Fast Computation of 𝐹
 P = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 Big idea

KMP𝑇 = 𝑃[1…1]
final 𝑙

𝐹 1 = 𝑙

KMP𝑇 = 𝑃[1…2]
final 𝑙

𝐹 2 = 𝑙

KMP𝑇 = 𝑃[1…𝑚 − 1]
final 𝑙

𝐹 𝑚 − 1 = 𝑙

…

‘chicken and egg’
problem with big idea:
need 𝐹 to put text
through KMP

c a b a

𝒂

a b a

𝑇:

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒍=𝟎
𝒊=𝟏

𝒍=𝟏
𝒊=𝟐

𝒍=𝟐
𝒊=𝟑

𝒍=𝟑
𝒊=𝟒

a b a
 Useful fact

 after processing 𝑇, final value of 𝑙 is
longest valid suffix of 𝑇

 Failure array 𝐹

 for 𝑗 > 0, 𝐹 𝑗 = length of the longest valid
suffix of 𝑃[1. . . 𝑗]

Fast Computation of 𝐹: Big Idea Saved
 𝑗 = 1

KMP𝑇 = 𝑃[1…1]
final 𝑙

𝐹 1 = 𝑙

 𝑗 = 2
KMP𝑇 = 𝑃[1…2]

final 𝑙
𝐹 2 = 𝑙

 start with 𝑙 = 0

 text has one letter, can reach at most 𝑙 = 1

 need at most 𝐹[0], and already have it

 start with 𝑙 = 0

 text has two letters, can reach at most 𝑙 = 2

 need at most 𝐹 0 , 𝐹 1 , and already have it

 𝑗 = 𝑚 − 1

KMP𝑇 = 𝑃[1…𝑚 − 1]
final 𝑙

𝐹 𝑚 − 1 = 𝑙

 start with 𝑙 = 0

 text has 𝑚 − 1 letters, can reach at most 𝑙 = 𝑚 − 1

 need at most 𝐹 0 , 𝐹 1 , … , 𝐹[𝑚 − 2], and already have it

…

Fast Computation of 𝐹: Big Idea Made Bigger

KMP𝑇 = 𝑃[1…1]
final 𝑙

𝐹 1 = 𝑙

KMP𝑇 = 𝑃[1…2]
final 𝑙

𝐹 2 = 𝑙

 Cost of passing 𝑃[1…1], 𝑃 1…2 ,… , 𝑃[1…𝑚 − 1] through KMP is equal to
the cost of passing just 𝑃[1…𝑚 − 1] through KMP

 In essence, we are just matching pattern with itself:

 𝑇 = 𝑃 1…𝑚 − 1 , 𝑃 = 𝑃

KMP𝑇 = 𝑃[1…𝑚 − 1]
final 𝑙

𝐹 𝑚 − 1 = 𝑙

…

do not start from
scratch, start from where
𝑃[1…1] finished

do not start from
scratch, start from
where 𝑃[1…𝑚 − 2]
finished

KMP𝑇 = 𝑃[1…3]
final 𝑙

𝐹 3 = 𝑙
do not start from
scratch, start from where
𝑃[1…2] finished

Fast Computation of 𝐹
 Process 𝑇 = 𝑃[1… 𝑗], 𝐹 𝑗 = final 𝑙

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 Initialize 𝐹[0] = 0

0 1 2 3 4 5 6

0
𝐹

Fast Computation of 𝐹

b𝑇:

 Process 𝑇 = 𝑃[1… 𝑗], 𝐹 𝑗 = final 𝑙

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 𝑗 = 1, 𝑇 = 𝑃 1… 𝑗 = 𝑏

0 1 2 3 4 5 6

0
𝐹

𝑃:

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

 𝑖 = 𝑖 + 1

 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

 𝑖 = 𝑖 + 1

 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

 𝑖 unchanged

 𝑙 = 𝐹[𝑙 − 1]

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

Fast Computation of 𝐹

b𝑇:

 Process 𝑇 = 𝑃[1… 𝑗], 𝐹 𝑗 = final 𝑙

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 𝑗 = 2, 𝑇 = 𝑃 1… 𝑗 = 𝑏𝑎

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

 𝑖 = 𝑖 + 1

 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

 𝑖 = 𝑖 + 1

 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

 𝑖 unchanged

 𝑙 = 𝐹[𝑙 − 1]

Fast Computation of 𝐹

b𝑇:

 Process 𝑇 = 𝑃[1… 𝑗], 𝐹 𝑗 = final 𝑙

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 𝑗 = 3, 𝑇 = 𝑃 1… 𝑗 = 𝑏𝑎𝑏

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

b

𝑏

𝒍=𝟐
𝒊=𝟑

2

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

 𝑖 = 𝑖 + 1

 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

 𝑖 = 𝑖 + 1

 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

 𝑖 unchanged

 𝑙 = 𝐹[𝑙 − 1]

Fast Computation of 𝐹

b𝑇:

 Process 𝑇 = 𝑃[1… 𝑗], 𝐹 𝑗 = final 𝑙

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 𝑗 = 4, 𝑇 = 𝑃 1… 𝑗 = 𝑏𝑎𝑏𝑎

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

b

𝑏

𝒍=𝟐
𝒊=𝟑

2

a

𝑎

𝒍=𝟑
𝒊=𝟒

3

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

 𝑖 = 𝑖 + 1

 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

 𝑖 = 𝑖 + 1

 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

 𝑖 unchanged

 𝑙 = 𝐹[𝑙 − 1]

Fast Computation of 𝐹

b𝑇:

 Process 𝑇 = 𝑃[1… 𝑗], 𝐹 𝑗 = final 𝑙

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 𝑗 = 5, 𝑇 = 𝑃 1… 𝑗 = 𝑏𝑎𝑏𝑎𝑐

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

b

𝑏

𝒍=𝟐
𝒊=𝟑

2

a

𝑎

𝒍=𝟑
𝒊=𝟒

3

c

b new 𝑙 = 1

𝒍=𝟏

(𝑎) 𝒃 new 𝑙 = 0

𝒍=𝟎

𝒂

𝒍=𝟎
𝒊=𝟓

0

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

 𝑖 = 𝑖 + 1

 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

 𝑖 = 𝑖 + 1

 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

 𝑖 unchanged

 𝑙 = 𝐹[𝑙 − 1]

Fast Computation of 𝐹

b𝑇:

 Process 𝑇 = 𝑃[1… 𝑗], 𝐹 𝑗 = final 𝑙

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 𝑗 = 6, 𝑇 = 𝑃 1… 𝑗 = 𝑏𝑎𝑏𝑎𝑐𝑎

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

b

𝑏

𝒍=𝟐
𝒊=𝟑

2

a

𝑎

𝒍=𝟑
𝒊=𝟒

3

c

b new 𝑙 = 1

𝒍=𝟏

(𝑎) 𝒃 new 𝑙 = 0

𝒍=𝟎

𝒂

𝒍=𝟎
𝒊=𝟓

0

a

𝒍=𝟏
𝒊=𝟔

1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

 𝑖 = 𝑖 + 1

 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

 𝑖 = 𝑖 + 1

 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

 𝑖 unchanged

 𝑙 = 𝐹[𝑙 − 1]

𝑎

Fast Computation of 𝐹

b𝑇:

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 Matching 𝑇 = 𝑃[1…𝑚 − 1] with pattern 𝑃, updating
𝐹 𝑖 = 𝑙 after each text letter 𝑖 is processed

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

b

𝑏

𝒍=𝟐
𝒊=𝟑

2

a

𝑎

𝒍=𝟑
𝒊=𝟒

3

c

b new 𝑙 = 1

𝒍=𝟏

(𝑎) 𝒃 new 𝑙 = 0

𝒍=𝟎

𝒂

𝒍=𝟎
𝒊=𝟓

0

a

𝒍=𝟏
𝒊=𝟔

1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

 𝑖 = 𝑖 + 1

 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

 𝑖 = 𝑖 + 1

 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

 𝑖 unchanged

 𝑙 = 𝐹[𝑙 − 1]

𝑎

Fast Computation of 𝐹

b𝑷:

 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

 Matching 𝑇 = 𝑃[1…𝑚 − 1] with pattern 𝑃, updating
𝐹 𝑖 = 𝑙 after each text letter 𝑖 is processed

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟏

𝒂

𝒍=𝟎
𝒊=𝟐

0

a

𝑎

𝒍=𝟏
𝒊=𝟑

1

b

𝑏

𝒍=𝟐
𝒊=𝟒

2

a

𝑎

𝒍=𝟑
𝒊=𝟓

3

c

b new 𝑙 = 1

𝒍=𝟏

(𝑎) 𝒃 new 𝑙 = 0

𝒍=𝟎

𝒂

𝒍=𝟎
𝒊=𝟔

0

a

𝒍=𝟏
𝒊=𝟕

1

if 𝑷 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

 𝑖 = 𝑖 + 1

 𝑙 is unchanged

if 𝑷[𝑖] = 𝑃[𝑙]

 𝑖 = 𝑖 + 1

 𝑙 = 𝑙 + 1

if 𝑷 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

 𝑖 unchanged

 𝑙 = 𝐹[𝑙 − 1]

𝑎

KMP: Computing Failure Array

failureArray(𝑃)
𝑃: String of length 𝑚 (pattern)

𝐹[0] ← 0
𝑗 ← 1 // matching 𝑃[1… 𝑗]
𝑙 ← 0
while 𝑗 < m do

if 𝑃[𝑗] = 𝑃[𝑙]
𝑙 ← 𝑙 + 1
𝐹 𝑗 ← 𝑙
𝑗 ← 𝑗 + 1

else if 𝑙 > 0
𝑙 ← 𝐹[𝑙 − 1]

else
𝐹 [𝑗] ← 0
𝑗 ← 𝑗 + 1

 Pseudocode is almost identical to
KMP 𝑇, 𝑃
 main difference: 𝐹[𝑗] gets both

used and updated

 same code as in the example on
previous slides, but we renamed 𝑖
into 𝑗

// rule 1

// rule 2

// rule 3
// 𝑙 = 0

KMP: FailureArray Runtime

failureArray(𝑃)
𝑃: String of length 𝑚

𝐹[0] ← 0
𝑗 ← 1
𝑙 ← 0
while 𝑗 < m do

if 𝑃[𝑗] = 𝑃[𝑙]
𝑙 ← 𝑙 + 1
𝐹 𝑗 ← 𝑙
𝑗 ← 𝑗 + 1

else if 𝑙 > 0
𝑙 ← 𝐹[𝑙 − 1]

else
𝐹 [𝑗] ← 0
𝑗 ← 𝑗 + 1

 To bound the number of loop iterations, find an
expression that increases by at least 1 at each iteration

 Have red, green and blue cases
 red + blue: 𝑗 increases by 1

 green: 𝑙 decreases by at least 1 → −𝑙 increases by
at least 1

 So let us try 𝑗 − 𝑙
 green + blue: increases by at least 1

 red: 𝑗 − 𝑙 → 𝑗 + 1 − 𝑙 + 1 = 𝑗 − 𝑙 , no increase

 Next try 2𝑗 − 𝑙
 red: 2𝑗 − 𝑙 → 2 𝑗 + 1 − 𝑙 + 1 → 2𝑗 − 𝑙 + 1

 green: 2𝑗 − 𝑙 increases by at least 1

 blue: 2𝑗 − 𝑙 → 2 𝑗 + 1 − 𝑙 → 2𝑗 − 𝑙 + 2

0 1 2 3 4 5 6

0
𝐹

0 1 2 3 0 1

 At initialization, 2𝑗 − 𝑙 = 2 ≥ 0

 At the end, 2𝑗 − 𝑙 ≤ 2𝑚
 𝑗 = 𝑚, 𝑙 ≥ 0

KMP: FailureArray Runtime

failureArray(𝑃)
𝑃: String of length 𝑚

𝐹[0] ← 0
𝑗 ← 1
𝑙 ← 0
while 𝑗 < m do

if 𝑃[𝑗] = 𝑃[𝑙]
𝑙 ← 𝑙 + 1
𝐹 𝑗 ← 𝑙
𝑗 ← 𝑗 + 1

else if 𝑙 > 0
𝑙 ← 𝐹[𝑙 − 1]

else
𝐹 [𝑗] ← 0
𝑗 ← 𝑗 + 1

 To bound the number of loop iterations, find an
expression that increases by at least 1 at each iteration

 Have red, green and blue cases
 red + blue: 𝑗 increases by 1

 green: 𝑙 decreases by at least 1 → −𝑙 increases by
at least 1

 So let us try 𝑗 − 𝑙
 green + blue: increases by at least 1

 red: 𝑗 − 𝑙 → 𝑗 + 1 − 𝑙 + 1 = 𝑗 − 𝑙 , no increase

 Next try 2𝑗 − 𝑙
 red: 2𝑗 − 𝑙 → 2 𝑗 + 1 − 𝑙 + 1 → 2𝑗 − 𝑙 + 1

 green: 2𝑗 − 𝑙 increases by at least 1

 blue: 2𝑗 − 𝑙 → 2 𝑗 + 1 − 𝑙 → 2𝑗 − 𝑙 + 2

0 1 2 3 4 5 6

0
𝐹

0 1 2 3 0 1

 At initialization, 2𝑗 − 𝑙 = 2 ≥ 0

 At the end, 2𝑗 − 𝑙 ≤ 2𝑚
 𝑗 = 𝑚, 𝑙 ≥ 0

𝐴 ≤ 2𝑚𝐴 = 2

KMP: FailureArray Runtime

failureArray(𝑃)
𝑃: String of length 𝑚

𝐹[0] ← 0
𝑗 ← 1
𝑙 ← 0
while 𝑗 < m do

if 𝑃[𝑗] = 𝑃[𝑙]
𝑙 ← 𝑙 + 1
𝐹 𝑗 ← 𝑙
𝑗 ← 𝑗 + 1

else if 𝑙 > 0
𝑙 ← 𝐹[𝑙 − 1]

else
𝐹 [𝑗] ← 0
𝑗 ← 𝑗 + 1

 To bound the number of loop iterations, find an
expression that increases by at least 1 at each iteration

 Have red, green and blue cases
 red + blue: 𝑗 increases by 1

 green: 𝑙 decreases by at least 1 → −𝑙 increases by
at least 1

 So let us try 𝑗 − 𝑙
 green + blue: increases by at least 1

 red: 𝑗 − 𝑙 → 𝑗 + 1 − 𝑙 + 1 = 𝑗 − 𝑙 , no increase

 Next try 2𝑗 − 𝑙
 red: 2𝑗 − 𝑙 → 2 𝑗 + 1 − 𝑙 + 1 → 2𝑗 − 𝑙 + 1

 green: 2𝑗 − 𝑙 increases by at least 1

 blue: 2𝑗 − 𝑙 → 2 𝑗 + 1 − 𝑙 → 2𝑗 − 𝑙 + 2

0 1 2 3 4 5 6

0
𝐹

0 1 2 3 0 1

 At initialization, 2𝑗 − 𝑙 = 2 ≥ 0

 At the end, 2𝑗 − 𝑙 ≤ 2𝑚
 𝑗 = 𝑚, 𝑙 ≥ 0

 No more than 2𝑚 loop iterations, and at least 𝑚 iterations

 Time is Θ(𝑚)

KMP: Main
Function Runtime

 KMP main function

 failureArray can be computed in Θ(𝑚) time

 Same analysis as for failure array gives Θ(𝑛)

 Running time KMP altogether: Θ(𝑛 +𝑚)

 which is the same as Θ(𝑛) as 𝑚 ≤ 𝑛

KMP 𝑇, 𝑃
𝐹 ← 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝐴𝑟𝑟𝑎𝑦 𝑃
𝑖 ← 0
𝑗 ← 0
while 𝑖 < 𝑛 do

if 𝑃[𝑗] = 𝑇[𝑖]
if 𝑗 = 𝑚 − 1

return “found at guess 𝑖 − 𝑚 + 1”
else

𝑖 ← 𝑖 + 1
𝑗 ← 𝑗 + 1

else // 𝑃[𝑗] ≠ 𝑇 [𝑖]
if 𝑗 > 0

𝑗 ← 𝐹[𝑗 − 1]
else

𝑖 ← 𝑖 + 1
return 𝐹𝐴𝐼𝐿

Outline

 String Matching

 Introduction

 Karp-Rabin Algorithm

 Knuth-Morris-Pratt algorithm

 Boyer-Moore Algorithm

 Suffix Trees

 Suffix Arrays

 Conclusion

Boyer-Moore Algorithm Motivation

 Fastest pattern matching in practice on English Text

 Important components

 Reverse-order searching

 compare 𝑃 with a guess moving backwards

 When a mismatch occurs choose the better option among the two below

1. Bad character heuristic

 eliminate shifts based on mismatched character of 𝑇

2. Good suffix heuristic

 eliminate shifts based on the matched part (i.e.) suffix of 𝑃

Reverse Searching vs. Forward Searching

w h e r e i s w a l d o

𝑇= whereiswaldo, 𝑃 = aldo

a

w h e r e i s w a l d o

 shift pattern past r

r

a l d o

a l d o

a l d o

 r does not occur in 𝑃 = aldo

o

 w does not occur in 𝑃 = aldo

w

 shift pattern past w

odla

 bad character heuristic can rule out
many shifts with reverse searching

w

 w does not occur in 𝑃 = aldo

 move pattern past w

o

a l d o

 the first shift moves pattern past w

 no shifts are ruled out

 bad character heuristic does not
rule out any shifts with forward
searching when the first character
of the pattern is mismatched

What if Mismatched Text Character Occurs in 𝑃?

a c r a n a p p l e

𝑇= acranapple, 𝑃 = aaron

no

 Mismatched character in the text is a

a

 Find last occurrence of a in 𝑃

 Shift the pattern to the right until last a in P aligns with a in text

 all smaller shifts are impossible since they do not match a

 Precompute last occurrence of any letter before matching starts

a a r o n

a a r o n next possible shift

impossible shift

last occurrence of
a in pattern

Bad Character Heuristic: Side Note

a c r a n a p p l e

𝑇= acranapple, 𝑃 = aaron

no
a

a a r o na a r o na a r o n

a a r o n

 If we shifted until the first a in P aligns with a in text

 this would give a possible shift, but misses a previous possible shift,
possibly leading to a missed pattern

also a valid shift

next possible shift

Bad Character Heuristic: Full Version
 Extends to the case when mismatched text character does occur in 𝑃

a c r a n a p p l e

𝑇= acranapple, 𝑃 = aaron

no
a

[a]

 Mismatched character in the text is a

 Shift the pattern to the right so that the last a in P aligns with a in text

 Continue matching the pattern (in reverse)

Bad Character Heuristic: Full Version
 Extends to the case when mismatched text character does occur in 𝑃

a c r a n a p p l e

𝑇= acranapple, 𝑃 = aaron

no
a

a a r o na a r o na a r o n[a] n

 Mismatched character in the text is a

 Shift the pattern to the right so that the last a in P aligns with a in text

 Continue matching the pattern (in reverse)

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) -1 -1 -1 -1 -1

 Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

 Example: 𝑃 = aaron

 initialization

a b c d e f … x y z

-1 -1 -1 -1 -1 -1 -1 -1 -1
this means:

0 1 2 3 4 5 … 24 25 26

-1 -1 -1 -1 -1 -1 -1 -1 -1
in actual implementation:

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) -1 -1 -1 -1 -1

 Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

 Example: 𝑃 = aaron

 computation

aaron
𝑖 = 0

a
0

𝐿 is valid for 𝑃 = a

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 0 -1 -1 -1 -1

 Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

 Example: 𝑃 = aaron

 computation

aaron
𝑖 = 1

a
1

𝐿 is valid for 𝑃 = aa

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 1 -1 -1 -1 -1

 Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

 Example: 𝑃 = aaron

 computation

aaron
𝑖 = 2

r
2

𝐿 is valid for 𝑃 = aar

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 1 -1 -1 2 -1

 Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

 Example: 𝑃 = aaron

 computation

aaron
𝑖 = 3

o
3

𝐿 is valid for 𝑃 = aaro

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 1 -1 3 2 -1

 Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

 Example: 𝑃 = aaron

 computation

aaron
𝑖 = 4

n
4

 Total time is 𝑂(𝑚 + |∑|)

𝐿 is valid for 𝑃 = aaron

Boyer-More Indexing

 Same as in KMP

 maintain variables 𝑖 and 𝑗

 𝑗 is the position in the pattern

 𝑖 is the position in the text where we do the next check

 check is performed by determining if 𝑇 𝑖 = 𝑃 𝑗

 current shift is 𝑖 − 𝑗

Bad Character Heuristic: Shifting Formula

a c r a n a p p l e
no

a

𝒋=𝟑
𝒊=𝟑

𝑇= acranapple, 𝑃 = aaron

𝒋=𝟒
𝒊=𝟔

 Let 𝐿(𝑐) be the last occurrence of character 𝑐 in 𝑃

 𝐿 𝐚 = 1 in our example

 When mismatch occurs at text position 𝑖, pattern position 𝑗, update

 𝑗 = 𝑚 − 1

 start matching at the end of the pattern

 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

 for our example

 𝑗 = 5 − 1 = 4

 𝑖 = 3 + 5 − 1 − 1 = 6

[a] n

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 1 4 3 2 -1

Bad Character Heuristic: Shifting Formula Explained

𝑖𝑜𝑙𝑑 𝑖𝑛𝑒𝑤

+𝑳(𝒄) −(𝒎− 𝟏)

𝑖𝑛𝑒𝑤

𝑖𝑛𝑒𝑤 = 𝑖𝑜𝑙𝑑 +𝑚 − 1 − 𝐿 𝑐

𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

𝑖

 Text character is 𝑐 at the mismatch position 𝑖 in the text

 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

− 𝑚 − 1 +𝐿 𝑐 = 𝑖𝑜𝑙𝑑

𝑐
𝑐𝑇

𝐿(𝑐)

Bad Character Heuristic: Important Use Condition
 Text character is 𝑐 at the mismatch position 𝑖 in the text

 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

 Old shift: 𝑖 − 𝑗

 New shift: 𝑖 + (𝑚 − 1) – 𝐿(𝑐) – (𝑚 − 1) = 𝑖 − 𝐿(𝑐)

 If 𝐿 𝑐 > 𝑗, new shift < old shift, shifts 𝑃 in the wrong direction, not useful

 we already ruled that shift out, no point to come back to it

 Example:

 bad character heuristic makes sense to used only if 𝑳 𝒄 < 𝒋

 𝐿 𝑐 ≠ 𝑗 in case of a mismatch

c a c r w a a p a a e

ao

a

𝒋=𝟑
𝒊=𝟖

𝑇= acranapple, 𝑃 = reroa

ao

a

𝐿 𝐚 = 4
𝐿 𝐚 > 𝑗 = 3

old shift: 𝑖 − 𝑗 = 8 − 3 = 5
𝑖 = 8 + 5 − 1 − 4 = 8
𝑗 = 5 − 1 = 4

new shift: 𝑖 − 𝑗 = 8 − 4 = 4

Bad Character Heuristic: Brute-Force Step
 If 𝐿 𝑐 > 𝑗

 pattern would shift in wrong direction if used bad character heuristic

 therefore, do brute-force step

 𝑗 = 𝑚 − 1

 𝑖 = 𝑖 − 𝑗 + 𝑚
𝑖𝑜𝑙𝑑 𝑖𝑛𝑒𝑤

= 𝑖𝑛𝑒𝑤

𝑖𝑛𝑒𝑤 = 𝑖𝑜𝑙𝑑 − 𝑗 +𝑚

𝑖 = 𝑖 − 𝑗 + 𝑚

𝑖

−𝑗

𝑚 − 1 +1

𝑖𝑜𝑙𝑑 −𝑗 +𝑚 − 1 +1

Bad Character Heuristic: Unified Formula

 If 𝐿(𝑐) < 𝑗

 𝑗 = 𝑚 − 1

 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

 If 𝐿 𝑐 > 𝑗

 𝑗 = 𝑚 − 1

 𝑖 = 𝑖 − 𝑗 + 𝑚

 Unified formula for 𝑖 that works in all cases

𝑖 = 𝑖 + 𝑚 − 1 −min{𝐿 𝑐 , 𝑗 − 1}

f e e d a l l p o o r p a r r o t s

𝑃 = paper

r

𝒋=𝟒
𝒊=𝟒

𝑇

Boyer-More Example 𝑐ℎ𝑎𝑟 a e p r others

𝐿(𝑐) 1 3 2 4 -1

 Unified formula for 𝑖 that works in all cases

𝑖 = 𝑖 + 𝑚 − 1 −min 𝐿 𝑐 , 𝑗 − 1

𝒊=𝟕

[a]

𝒋=𝟒
𝒊=𝟕

r 𝒊=𝟗

𝒋=𝟒
𝒊=𝟗

[p] r 𝒊 =𝟏4

𝒋=𝟒
𝒊=14

re 𝒊 = 𝟏𝟓

not found!

𝒋=𝟑
𝒊=13

r 𝒊 = 𝟐𝟎

𝒋=𝟒
𝒊=15

Boyer-Moore Algorithm

BoyerMoore(𝑇, 𝑃)

𝐿 ← last occurrence array computed from 𝑃

𝑗 ← 𝑚 − 1

𝑖 ← 𝑚 − 1

while 𝑖 < 𝑛 and 𝑗 ≥ 0 do //current guess begins at index 𝑖 − 𝑗

if 𝑇 𝑖 = 𝑃[𝑗] then

𝑖 ← 𝑖 − 1

𝑗 ← 𝑗 − 1

else

𝑖 ← 𝑖 + 𝑚 − 1 −min{𝐿 𝑐 , 𝑗 − 1}

𝑗 ← 𝑚 − 1

if 𝑗 = −1 return “found at shift 𝑖 + 1” // 𝑖 moved one position to

// the left of the first char in 𝑇

else return FAIL

0

Good Suffix Heuristic
 Idea is similar to KMP, but applied to the suffix, since matching backwards

o n o o o b o o o i b b o u n d a r y

𝑃 = onobobo

obob

𝒋=𝟑
𝒊=𝟑

𝑇

 Text has letters obo

 Do the smallest shift so that obo fits

o n o b o b o

 Can precompute this from the pattern itself, before matching starts

 ‘if failure at 𝑗 = 3, shift pattern by 2’

 Continue matching from the end of the new shift

 Will not study the precise way to do it

o n o b o b o

Boyer-Moore Algorithm with Good Suffix

BoyerMoore(𝑇, 𝑃)

𝐿 ← last occurrence array computed from 𝑃

𝑆 ← good suffix array computed from 𝑃

𝑗 ← 𝑚 − 1

𝑖 ← 𝑚 − 1

while 𝑖 < 𝑛 and 𝑗 ≥ 0 do //current guess begins at index 𝑖 − 𝑗

if 𝑇 𝑖 = 𝑃[𝑗] then

𝑖 ← 𝑖 − 1

𝑗 ← 𝑗 − 1

else

𝑖 ← 𝑖 + 𝑚 − 1 −min{𝐿 𝑇 𝑖 , 𝑆[𝑗]}

𝑗 ← 𝑚 − 1

if 𝑗 = −1 return “found at shift 𝑖 + 1”

else return FAIL

Boyer-Moore Summary

 Boyer-Moore performs very well, even when using only bad character
heuristic

 Worst case run time is 𝑂(𝑛𝑚) with bad character heuristic only, but in
practice much faster

 On typical English text, Boyer-Moore looks only at ≈25% of text 𝑇

 With good suffix heuristic, can ensure 𝑂(𝑛 +𝑚 + |Σ|) run time

 no details

Outline

 String Matching
 Introduction
 Karp-Rabin Algorithm
 Knuth-Morris-Pratt algorithm
 Boyer-Moore Algorithm
 Suffix Trees
 Suffix Arrays
 Conclusion

Suffix Tree: Trie of Suffixes

 What if we search for many patterns 𝑃 within the same fixed text 𝑇?

 Idea: preprocess the text 𝑇 rather than pattern 𝑃

 Observation: 𝑃 is a substring of 𝑇 if and only if 𝑃 is a prefix of some
suffix of 𝑇

 Example: 𝑃 = ish

𝑇 =establishment

 Store all suffixes of 𝑇 in a trie

 To save space

 use compressed trie
 store suffixes implicitly via indices into 𝑇

 This is called a suffix tree

suffix

prefix

Trie of suffixes: Example
 T = bananaban

Suffixes = {bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n, Λ}

na

an$
n

$
aban$

a

ananaban$
$

$
anaban$

a nb

bananaban$
$naba

a

ban$

n

na

n$
na

nanaban$
$

$
naban$

a nba

$

S = {bananaban$, ananaban$, nanaban$, anaban$,naban$,..., ban$, n$, $}

Trie of suffixes: Example

na

an$
n

$
aban$

a

ananaban$
$

$
anaban$

a nb

bananaban$
$naba

a

ban$

n

na

n$
na

nanaban$
$

$
naban$

a nba

$

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = $

$T[9..9]

 Store suffixes via indices

Trie of suffixes: Example

na

an$
n

$
aban$

a

ananaban$
$

$
anaban$

a nb

bananaban$
$naba

a

ban$

n

na

n$
na

nanaban$
$

$
naban$

a nba

$

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = a b a n $

T[5..9]

$T[9..9]

 Store suffixes via indices

Tries of suffixes

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

T[9..9]

T[5..9]
n $a

T[7..9]

T[3..9]
$na

$
T[1..9]

nab

$
T[0..9]

naba

a

T[6..9]

n

na

T[8..9]

T[4..9]
n $a

$
T[2..9]

naba

 In actual implementation, each
leaf 𝑙 stores the start of its
suffix in variable 𝑙. 𝑠𝑡𝑎𝑟𝑡

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 9

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 5

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 3

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 1

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 7

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 6

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 0

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 8

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 4

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 2

Suffix tree

0

T[9..9]

1

T[5..9]

2

T[7..9]

3

T[3..9]

T[1..9]T[6..9]

1

3

T[0..9]

T[8..9]

2

T[4..9]

T[2..9]

 Suffix tree: compressed trie of suffixes

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

 If 𝑃 occurs in the text, it is a prefix of one (or more) strings stored in the trie

 Have to modify search in a trie to allow search for a prefix

b a n a n a b a n $

Building Suffix Tree
 Building

 text 𝑇 has 𝑛 characters and 𝑛 + 1 suffixes

 can build suffix tree by inserting each suffix of 𝑇 into compressed trie

 takes Θ |Σ|𝑛2 time

 there is a way to build a suffix tree of 𝑇 in Θ(|Σ|𝑛) time

 beyond the course scope

 Pattern Matching

 essentially search for 𝑃 in compressed trie

 some changes needed, since 𝑃 may only be prefix of stored word

 run-time is

 𝑂 Σ 𝑚 , assuming each node stores children in a linked list

 𝑂 𝑚 , assuming each node stores children in an array

 Summary

 theoretically good, but construction is slow or complicated and lots of space-
overhead

 rarely used in practice

Outline

 String Matching
 Introduction
 Karp-Rabin Algorithm
 Knuth-Morris-Pratt algorithm
 Boyer-Moore Algorithm
 Suffix Trees
 Suffix Arrays
 Conclusion

Suffix Arrays

 Relatively recent development (popularized in the 1990s)

 Sacrifice some performance for simplicity

 slightly slower (by a log-factor) than suffix trees

 much easier to build

 much simpler pattern matching

 very little space, only one array

 Idea

 store suffixes implicitly, by storing start indices

 store the sorting permutation of the suffixes in 𝑇

Suffix Array Example 0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

i suffix 𝑇[𝑖 …𝑛]

0 bananaban$

1 ananaban$

2 nanaban$

3 anaban$

4 naban$

5 aban$

6 ban$

7 an$

8 n$

9 $

sort lexicographically

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

9 5 7 3 1 6 0 8 4 2Suffix Array =
0 1 2 3 4 5 6 7 8 9

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

Suffix Array Construction

 Easy to construct using MSD-Radix-Sort (pad with any character to get the same length)

bananaban$

ananaban$*

nanaban$**

anaban$***

naban$****

aban$*****

ban$******

an$*******

n$********

$*********

$********

ananaban$

anaban$***

aban$*****

an$*******

bananaban$

ban$******

nanaban$**

naban$****

n$********

round 𝟏

$********

aban$****

ananaban$

anaban$**

an$******

bananaban$

ban$******

nanaban$**

naban$****

n$********

round 𝟐 round 𝒏

 Fast in practice, suffixes are unlikely to share many leading characters

 But worst case run-time is Θ 𝑛2

 recursion depth is 𝑛, Θ 𝑛 time at each recursion depth, example: 𝑇 = 𝑎𝑎… . 𝑎

$********

aban$****

an$*******

anaban$***

ananaban$*

ban$******

bananaban$

n$********

naban$****

nanaban$**

…

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

Suffix Array Construction
 Idea: we do not need 𝑛 rounds

 Θ log𝑛 rounds enough → Θ 𝑛 log𝑛 run time

 Construction-algorithm

 MSD-radix sort plus some bookkeeping

 needs only one extra array

 easy to implement

 details are covered in an algorithms course

Pattern Matching in Suffix Arrays

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

 Suffix array stores suffixes (implicitly) in sorted order

 Idea: apply binary search

𝑙 →

P = ban

𝑟 →

𝑣 →

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = b a n a n a b a n $

ban > a

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

b a n

Pattern Matching in Suffix Arrays

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

 Suffix array stores suffixes (implicitly) in sorted order

 Idea: apply binary search

𝑙 →

P = ban

𝑟 →

𝑣 →

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = b a n a n a b a n $

ban < n

b a n

Pattern Matching in Suffix Arrays

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

 Suffix array stores suffixes (implicitly) in sorted
order

 Idea: apply binary search

𝑙 →

P = ban

𝑟 →

𝑣 =

 Θ log𝑛 comparisons

 Each comparison is
strcmp(𝑃, 𝑇[𝐴𝑠 𝑣 …𝐴𝑠 𝑣 +𝑚 − 1])

 Θ 𝑚 per comparison ⟹ run-time is
Θ 𝑚 log𝑛

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = b a n a n a b a n $

found!

b a n

Pattern Matching in Suffix Arrays

SuffixArray-Search(𝑇, 𝑃, 𝐴𝑠 0…𝑛 − 1)

𝐴𝑠: suffix array of 𝑇, 𝑃: pattern

𝑙 ← 0, 𝑟 ← 𝑛 − 1

while 𝑙 < 𝑟

𝑣 ←
𝑙+𝑟

2

𝑖 ← 𝐴𝑠 𝑣

// assume strcmp handles out of bounds suitably

𝑠 ← strcmp(𝑃, 𝑇 𝑖 … 𝑖 + 𝑚 − 1)

if 𝑠 > 0 do 𝑙 ← 𝑣 + 1

else 𝑠 < 0 do 𝑟 ← 𝑣 − 1

else return ‘found at guess 𝑇 𝑖 … 𝑖 + 𝑚 − 1 ’

if strcmp 𝑃, 𝑇[𝐴𝑠 𝑙 , 𝐴𝑠 𝑙] + 𝑚 − 1] = 0

return ‘found at guess 𝑇 𝐴𝑠 𝑙 , 𝐴𝑠 𝑙] + 𝑚 − 1 ’

return FAIL

Outline

 String Matching
 Introduction
 Karp-Rabin Algorithm
 Knuth-Morris-Pratt algorithm
 Boyer-Moore Algorithm
 Suffix Trees
 Suffix Arrays
 Conclusion

String Matching Conclusion

 Algorithms stop once they found one occurrence

 Most of them can be adapted to find all occurrences within the same
worst-case run-time

Brute
Force

KR BM KMP Suffix Trees Suffix Array

preproc. — 𝑂(𝑚) 𝑂(𝑚 + |∑|) 𝑂(𝑚)
𝑂(|∑|𝑛2)
→ 𝑂(|∑|𝑛)

𝑂(𝑛𝑙𝑜𝑔𝑛)
→ 𝑂(𝑛)

search
time

(preproc
excluded)

𝑂(𝑛𝑚)
𝑂(𝑛 + 𝑚)

expected

𝑂(𝑛 + |∑|)
with good suffix

often
better

𝑂(𝑛) 𝑂(𝑚)
𝑂(𝑚𝑙𝑜𝑔𝑛)
→ 𝑂(𝑚 + 𝑙𝑜𝑔𝑛)

extra space — 𝑂(1) 𝑂(𝑚 + |∑|) 𝑂(𝑚) 𝑂(𝑛) 𝑂(𝑛)

