CS 240 – Data Structures and Data Management

#### Module 9: String Matching

A. Hunt and O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

#### Outline

#### String Matching

- Introduction
- Karp-Rabin Algorithm
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

# Pattern Matching Definitions [1]

- Search for a string (pattern) in a large body of text
- T[0...n 1] text (or haystack) being searched
- $P[0 \dots m 1]$  pattern (or needle) being searched for
- Strings over alphabet Σ
- Return the first occurrence of *P* in *T*
- Example

T = Little piglets cooked for mother pig  $\int_{+}^{+} \int_{+}^{+} \int_{+}^{}$ 

return smallest *i* such that

T[i+j] = P[j] for  $0 \le j \le m-1$ 

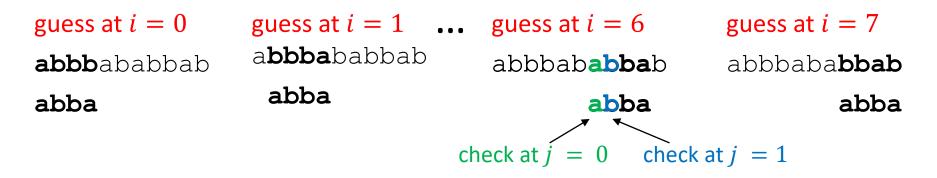
- If P does not occur in T, return FAIL
- Applications
  - information retrieval (text editors, search engines), bioinformatics, data mining

## More Definitions [2]

#### antidisestablishmentarianism

- Substring T[i...j]  $0 \le i \le j < n$  is a string consisting of characters T[i], T[i+1], ..., T[j]
  - length is j i + 1
- Prefix of T is a substring T[0...i] of T for some  $0 \le i \le n-1$
- Suffix of T is a substring T  $[i \dots n 1]$  of T for some  $0 \le i \le n 1$
- With this definition, prefix and suffix are never empty strings
  - sometimes want to allow empty string prefix and suffix

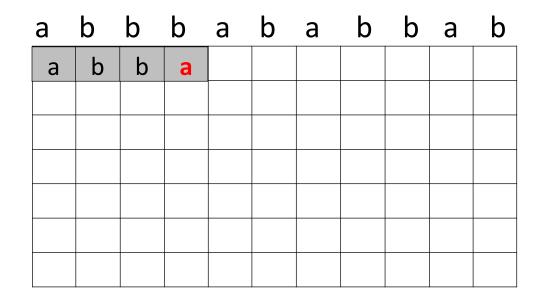
## **General Idea of Algorithms**



- Pattern matching algorithms consist of guesses and checks
  - a guess or shift is a position i such that P might start at T[i]
  - valid guesses (initially) are  $0 \le i \le n m$
  - a check of a guess is a single position j with 0 ≤ j < m where we compare T [i + j] to P[j]</li>
    - must perform m checks of a single correct guess
  - may make fewer checks of an incorrect guess

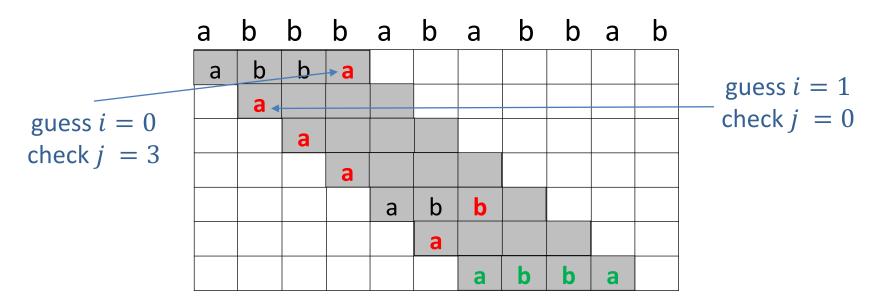
## **Diagrams for Matching**

- Diagram single run of pattern matching algorithm by matrix of checks
  - each row represents a single guess



#### **Brute-Force Algorithm: Example**

Example: T = abbbabbabbab, P = abba



Worst possible input

•  $P = a \dots ab, T = aaaaaaaaa \dots aaaaaaa$ m - 1 times n times

- Have to perform (n m + 1)m checks, which is  $\Theta((n m)m)$  runtime
  - this is  $\Theta(nm)$  if  $m \le n/2$
  - worst running time if m = n/2
    - $\Theta(n^2)$

## **Brute-force Algorithm**

Checks every possible guess

Bruteforce::PatternMatching(T [0..n - 1], P[0..m - 1]) T: String of length n (text), P: String of length m (pattern) for  $i \leftarrow 0$  to n - m do if strcmp(T [i ... i + m - 1], P) = 0 return "found at guess i" return FAIL

• Note: *strcmp* takes  $\Theta(m)$  time

```
strcmp(T [i ... i + m - 1], P[0...m - 1])
for j \leftarrow 0 to m - 1 do
if T [i + j] is before P[j] in \Sigma then return -1
if T [i + j] is after P[j] in \Sigma then return 1
return 0
```

#### How to improve?

- Extra preprocessing on pattern P
  - Karp-Rabin
  - KMP
  - Boyer-Moore
  - Eliminate guesses based on completed matches and mismatches
- Do extra preprocessing on the text T
  - Suffix-trees
  - Suffix-arrays
  - Create a data structure to find matches easily

#### Outline

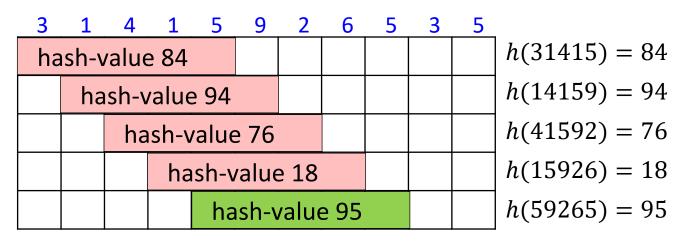
#### String Matching

- Introduction
- Karp-Rabin Algorithm
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

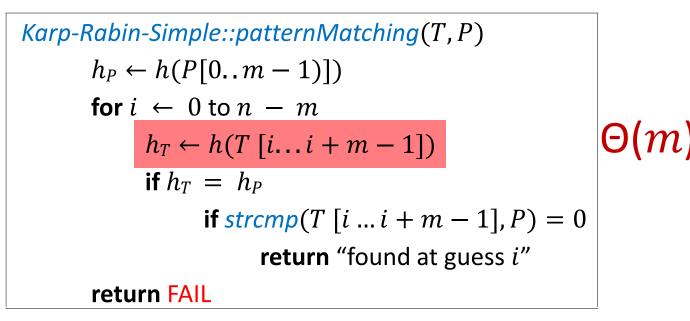
# Karp-Rabin Fingerprint Algorithm: Idea

- Hash functions are useful not just for hash tables!
- Idea: use hashing to eliminate guesses faster
  - compute hash function for each guess, compare with pattern hash
    - if values are unequal, then current guess cannot match the pattern
    - if values are equal, verify that pattern actually matches text
      - equal hash value does not guarantee equal keys
      - although if hash function is good, most likely keys are equal
      - O(m) time to verify, but happens rarely, and most likely only for true match
  - Example:  $P = 5 \ 9 \ 2 \ 6 \ 5$ ,  $T = 3 \ 1 \ 4 \ 1 \ 5 \ 9 \ 2 \ 6 \ 5 \ 3 \ 5$ 
    - standard hash function: flattening + modular (radix R = 10):

 $h(59265) = (5 \cdot 10^4 + 9 \cdot 10^3 + 2 \cdot 10^2 + 6 \cdot 10^1 + 5) \mod 97 = 59265 \mod 97 = 95$ 

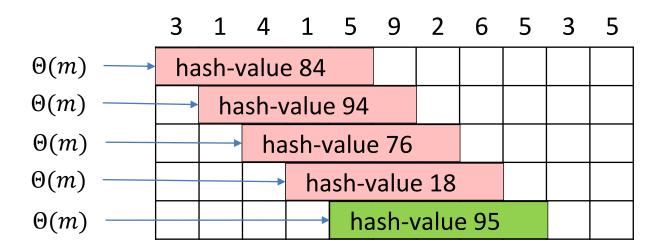


## Karp-Rabin Fingerprint Algorithm – First Attempt



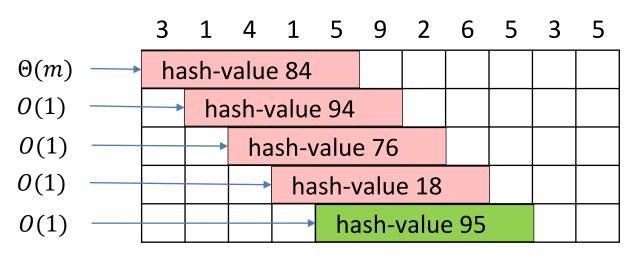
- Algorithm correctness: match is not missed
  - $h(T[i..i + m 1]) \neq h(P) \Rightarrow$  guess *i* is not *P*
- What about running time?

## Karp-Rabin Fingerprint Algorithm: First Attempt



- For each shift,  $\Theta(m)$  time to compute hash value
  - since h(T[i...i + m 1]) depends on all m characters
  - worse than brute-force!
    - it is possible for brute force matching to use less than Θ(m) per shift, as it stops at the first mismatched character
- n m + 1 shifts in text to check
- Total time is  $\Theta(mn)$  if pattern not in text
  - how can we improve this?

# Karp-Rabin Fingerprint Algorithm: Idea



- Idea: compute next hash from previous one in O(1) time
- n m + 1 shifts in text to check
- $\Theta(m)$  to compute the first hash value
- O(1) to compute all other hash values
- $\Theta(n+m)$  expected time
  - recall that we still need to check if the pattern actually matches text whenever hash value of text is equal to the hash value of pattern
  - if hash function is good, then whenever hash values are equal, pattern most likely matches the text

# Karp-Rabin Fingerprint Algorithm – Fast Rehash

- For historical reasons, hashes are called **fingerprints**
- Insight: can update a fingerprint from previous fingerprint in constant time
  - 0(1) time to compute any hash, except first one
- Example

T = 4 1 5 9 2 6 5 3 5, P = 5 9 2 6 5

- Initialization of the algorithm
  - 1. compute first hash:  $h(41592) = 41592 \mod 97 = 76 [\Theta(m) \text{ time}]$
  - 2. also compute  $10000 \mod 97 = 9$
- Main loop: repeatedly compute next hash from the previous one
- Example: compute <u>15926</u> mod 97 from <u>41592</u> mod 97
  - get rid of the old first digit and add new last digit

41592 
$$\xrightarrow{-4 \cdot 10000}$$
 1592  $\xrightarrow{\times 10}$  15920  $\xrightarrow{+6}$  15926

Algebraically,

 $(41592 - (4 \cdot 10000)) \cdot 10 + 6 = 15926$ 

# Karp-Rabin Fingerprint Algorithm – Fast Rehash

- Insight: can update a fingerprint from previous fingerprint in constant time
- Example

T = 4 1 5 9 2 6 5 3 5, P = 5 9 2 6 5

Initialization of the algorithm

1. compute first hash:  $h(41592) = 41592 \mod 97 = 76 \quad [\Theta(m) \text{ time}]$ 

- 2. also compute  $10000 \mod 97 = 9$
- Main loop: repeatedly compute next hash from the previous one
- Example: compute <u>15926</u> mod 97 from <u>41592</u> mod 97

$$(41592 - (4 \cdot 10000)) \cdot 10 + 6 = 15926$$

$$((41592 - (4 \cdot 10000)) \cdot 10 + 6) \mod 97 = 15926 \mod 97$$

$$((41592 \mod 97 - (4 \cdot (10000 \mod 97)))) \cdot 10 + 6) \mod 97 = 15926 \mod 97$$
previous hash precomputed
$$((76 - (4 \cdot 9)) \cdot 10 + 6) \mod 97 = 15926 \mod 97$$
constant number of anomations independent of m

constant number of operations, independent of m

 $18 = 15926 \mod 97$ 

## Karp-Rabin Fingerprint Algorithm – Conclusion

Karp-Rabin-RollingHash::PatternMatching(T, P)  $M \leftarrow$  suitable prime number  $h_P \leftarrow h(P[0...m-1)])$  $h_T \leftarrow h(T [0..m-1)])$  $s \leftarrow 10^{m-1} \mod M$ for  $i \leftarrow 0$  to n - mif  $h_T = h_P$ if strcmp(T [i ... i + m - 1], P) = 0**return** "found at guess *i*" if i < n - m // compute hash-value for next guess  $h_T \leftarrow ((h_T - T[i] \cdot s) \cdot 10 + T[i + m]) \mod M$ return FAIL

- Choose "table size" M at random to be prime in {2, ..., mn<sup>2</sup>}
- Expected running time is O(m+n)
- $\Theta(mn)$  worst-case, but this extremely is unlikely
- Improvement: reset *M* if no match at  $h_T = h_P$

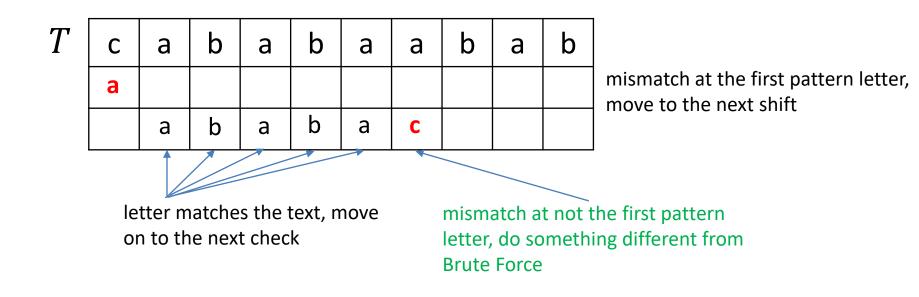
#### Outline

#### String Matching

- Introduction
- Karp-Rabin Algorithm
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

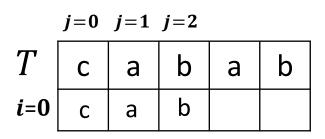
## Knuth-Morris-Pratt (KMP) Overview

- KMP starts out similar to Brute-Force pattern matching
  - P = ababaca



## Knuth-Morris-Pratt (KMP) Indexing

P = cad

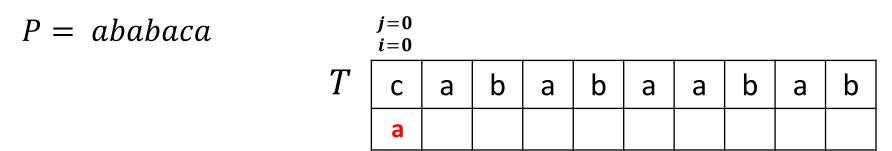


- Brute-force indexing
  - maintain variables *i* and *j*
  - *j* is the position in the pattern
  - *i* is equal to the current shift
  - check is performed by determining if T[i + j] = P[j]

|   | j=0<br>i=0 | j=1<br>i=1 | j=2<br>i=2 |   |   |
|---|------------|------------|------------|---|---|
| T | С          | а          | b          | а | b |
|   | С          | а          | b          |   |   |

- KMP indexing
  - maintain variables i and j
  - *j* is the position in the pattern
  - *i* is the position in the text where we do the next check
  - check is performed by determining if
     T[i] = P[j]
  - current shift is i j

# Knuth-Morris-Pratt (KMP) Derivation



- KMP starts similar to brute force pattern matching
  - maintain variables *i* and *j*
    - *j* is the position in the pattern
    - *i* is the position in the text where we do the check
    - check is performed by determining if T[i] = P[j]
      - current shift is i j
- Begin matching with i = 0, j = 0
- If  $T[i] \neq P[j]$  and j = 0, shift pattern by 1, the same action as in brute-force
  - *i* = *i* + 1
  - *j* is unchanged
    - shift was i j and it changes to i + 1 j
      - it increases by 1 as needed

#### **Knuth-Morris-Pratt Motivation**

P = ababaca

| j=0 | <i>j</i> =0 | j=1 | <i>j</i> =2 | j=3 | <i>j</i> =4 <i>j</i> =5 |  |
|-----|-------------|-----|-------------|-----|-------------------------|--|
|     |             |     |             |     | i = 5 $i = 6$           |  |

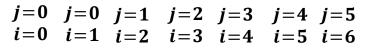
| Т | С | а | b | а | b | а | а | b | а | b |
|---|---|---|---|---|---|---|---|---|---|---|
|   | а |   |   |   |   |   |   |   |   |   |
|   |   | а | b | а | b | а | С |   |   |   |

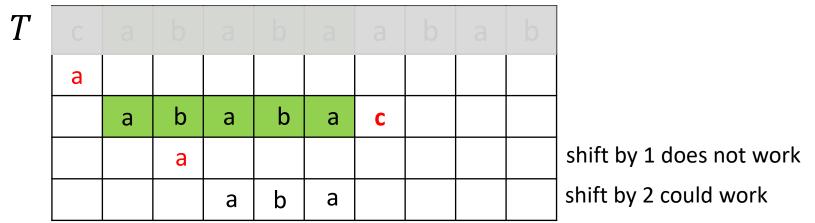
• When T[i] = P[j], the action is to check the next letter, as in brute-force

- *i* = *i* + 1
- *j* = *j* + 1
- shift was *i* − *j* and it stays unchanged
- Failure at text position i = 6, pattern position j = 5
- When failure is at pattern position j > 0, do something smarter than brute force

## **Knuth-Morris-Pratt Motivation**

#### P = ababaca

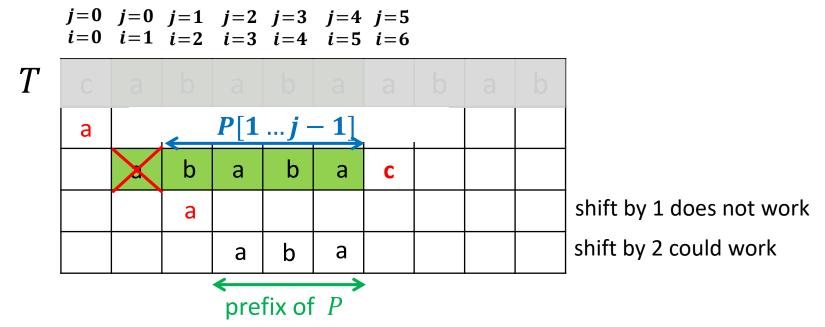




- When failure is at pattern position j > 0, do something smarter than brute force
- Prior to *j* = 5, pattern and text are equal
  - find how to shift pattern looking only at pattern
- If failure at j = 5, shift pattern by 2 **and** start matching with j = 3
  - equivalently: i stays the same, new j = 3
    - old shift was i 5, the new shift is i 3, so shift increased by 2
  - skipped one shift, and 3 character checks
  - can precompute the action of 'shift by 2 and skip 3 characters' before matching even begins, from the pattern, as we do not need text for this computation

## **Knuth-Morris-Pratt Motivation**

P = ababaca



- If failure at j = 5: continue matching with the same i and new j = 3
  - precomputed from pattern before matching begins
- Brief rule for determining new j
  - find longest suffix of  $P[1 \dots j 1]$  which is also prefix of P
  - call a suffix valid if it is a prefix of P
  - new j = the length of the longest valid suffix of P[1 ... j 1]

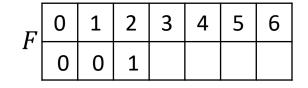
## **KMP** Failure Array Computation: Slow

- Rule: if failure at pattern index *j* > 0, continue matching with the same *i* and new *j* = the length of the longest valid suffix of *P*[1 ... *j* − 1]
- Computed previously for j = 5, but need to compute for all j
- Store this information in array F[0...m-1], also called failure-function
  - F[j] is length of the longest valid suffix of P[1...j]
  - if failure at pattern index j > 0, new j = F[j 1]
- We could have indexed failure array F differently
  - F[j] is length of the longest valid suffix of P[1...j-1]
  - if failure at pattern index j > 0, new j = F[j]
  - But then we have to remember, when computing F[j] that
    - F[j] is length of the longest valid suffix of P[1...j 1]

Inconvenient to remember

#### **KMP** Failure Array Computation: Slow

- Rule: if failure at pattern index *j* > 0, continue matching with the same *i* and new *j* = the length of the longest valid suffix of *P*[1 ... *j* − 1]
- Store the length of the longest valid suffix of *P*[1...*j*] in *F*[*j*]
- If failure at pattern index j > 0, new j = F[j 1]
- P = ababaca



- $P[1 \dots 0] = ""$ , P = ababaca, longest valid suffix is ""
- note that F[0] = 0 for any pattern
- *j* = 1
  - $P[1 \dots 1] = b$ , P = ababaca, longest valid suffix is ""
- *j* = 2
  - $P[1 \dots 2] = ba$ , P = ababaca, longest valid suffix is a

### **KMP** Failure Array Computation: Slow

Store the length of the longest valid suffix of P[1...j] in F[j]

| E | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| Ľ | 0 | 0 | 1 | 2 | 3 | 0 | 1 |

- *j* = 3
- P[1...3] = bab, P = ababaca, longest valid suffix is ab
  j = 4
- P[1...4] = baba, P = ababaca, longest valid suffix is aba
  j = 5
  - P[1...5] = babac , P = ababaca, longest valid suffix is ""
- *j* = 6
  - $P[1 \dots 6] = babaca, P = ababaca, longest valid suffix is a$
- Failure array is precomputed before matching starts
  - straightforward computation is O(m<sup>3</sup>) time

for j = 0 to m - 1 // go over all positions in the failure array for i = 1 to j // go over all suffixes of P[1 ... j]for k = 1 to i // compare next suffix to prefix of P

## String matching with KMP: Example

• T = cabababcababaca, P = ababaca

| F | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 2 | 3 | 0 | 1 |

|            | <i>j</i> =0 |   |   | _ |   |   |   |   |   | _ |   |   |   |   |   |
|------------|-------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| <i>T</i> : | С           | а | b | а | b | а | b | С | а | b | а | b | а | С | а |
| <i>P</i> : |             |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|            |             |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|            |             |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

rule 1

i=0

if T[i] = P[j]

- *i* = *i* + 1
- j = j + 1

if  $T[i] \neq P[j]$  and j > 0 if  $T[i] \neq P[j]$  and j = 0

i unchanged

rule 2

• 
$$j = F[j-1]$$

rule 3

- *i* = *i* + 1
  - *i* is unchanged

#### String matching with KMP: Example

• T = cabababcababaca, P = ababaca

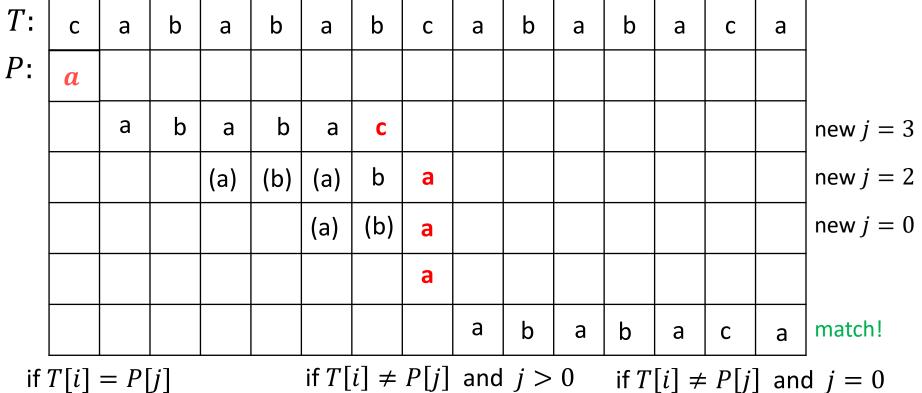
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 0 | 1 |

F

| j=0 $j=0$ $j=1$ $j=2$ $j=3$ | j=4 $j=5$ $j=4$ $j=0$ $j=1$ $j=2$ $j=3$ $j=4$ $j=5$ $j=6$      |
|-----------------------------|----------------------------------------------------------------|
| i=0 $i=1$ $i=2$ $i=3$ $i=4$ | i=5 $i=6$ $i=7$ $i=8$ $i=9$ $i=10$ $i=11$ $i=12$ $i=13$ $i=14$ |

i=0

 $j = 3 - \frac{j}{j} = 2$ 



if T[i] = P[j]

- *i* = *i* + 1
- *j* = *j* + 1

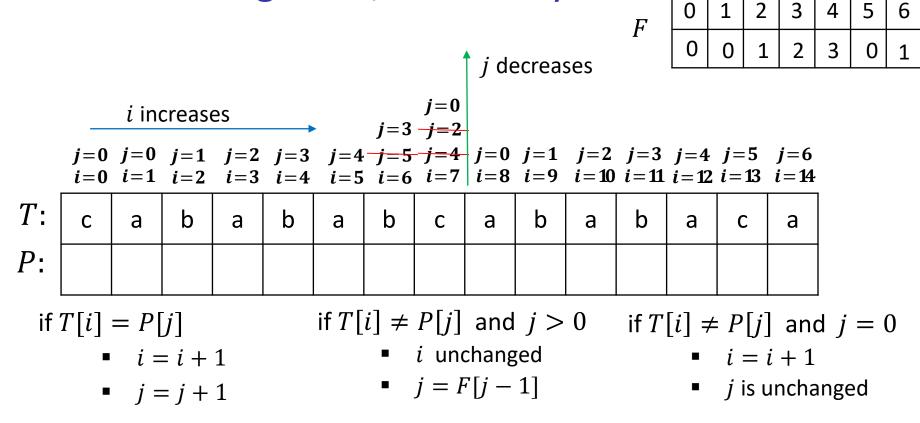
- *i* unchanged
- i = F[i 1]

- *i* = *i* + 1
- *i* is unchanged

#### **Knuth-Morris-Pratt Algorithm**

```
KMP(T, P)
      F \leftarrow failureArray(P)
      i \leftarrow 0 // current character of T
      j \leftarrow 0 // \text{current character of } P
      while i < n \operatorname{do}
            if P[j] = T[i]
                     if j = m - 1
                         return "found at shift i - m + 1"
                       // shift is equal to i - j
                     else // rule 1
                         i \leftarrow i + 1
                         j \leftarrow j + 1
             else // P[j] \neq T[i]
                     if j > 0
                            j \leftarrow F[j-1] // rule 2
                     else // rule 3
                            i \leftarrow i+1
        return FAIL
```

#### KMP: Running Time, informally



- For now, ignore the cost of computing failure array
- Total time = 'horizontal iterations' + 'vertical iterations'
- *i* can increase at most *n* times  $\rightarrow$  *j* can increase at most *n* times
- Total number of decreases of  $j \leq \text{total number of increases of } j \leq n$
- O(n) total iterations, more formal analysis later

## Fast Computation of F

- Failure array *F* 
  - *F*[0] = 0, no need to compute
  - for j > 0, F[j] = length of the longest suffix of P[1...j] which is also prefix of P
    - i.e. *F*[*j*] = longest valid suffix of *P*[1 ... *j*]
- Crucial fact: after processing T, final value of j is longest valid suffix of T

$$P = ababaca$$

$$T: \begin{array}{c|c} j=0 & j=1 & j=2 & j=3\\ i=0 & i=1 & i=2 & i=3 \\ \hline c & a & b & a \\ \hline P: & a & b & a \\ \hline a & b & a \end{array}$$

- Use the crucial fact for computation of F
  - match  $T = P[1 \dots 1]$  with P, and set F[1] =final j
  - match  $T = P[1 \dots 2]$  with P, and set F[2] = final j
  - •
  - match  $T = P[1 \dots m 1]$  with P, and set F[m 1] = final j
  - but first, let us rename variable j as l (only for failure array computation)
    - since *j* is already used when we take  $T = P[1 \dots j]$

## Fast Computation of F

- P = ababaca
- Useful fact
  - after processing *T*, final value of *l* is longest valid suffix of *T*
- Failure array *F* 
  - for j > 0, F[j] = length of the longest valid suffix of P[1...j]
- Big idea

$$T = P[1 \dots 1] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[1] = l$$

$$T = P[1 \dots 2] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[2] = l$$

$$\vdots$$

$$T = P[1 \dots m - 1] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[m - 1] = l$$

$$l=0$$
  $l=0$   $l=1$   $l=2$   $l=3$   
 $i=0$   $i=1$   $i=2$   $i=3$   $i=4$ 

'chicken and egg' problem with big idea: need F to put text through KMP

## Fast Computation of F: Big Idea Saved

• j = 1 $T = P[1 \dots 1] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[1] = l$ 

- start with l = 0
- text has one letter, can reach at most l = 1
- need at most F[0], and already have it

• 
$$j = 2$$
  
 $T = P[1 \dots 2] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[2] = 1$ 

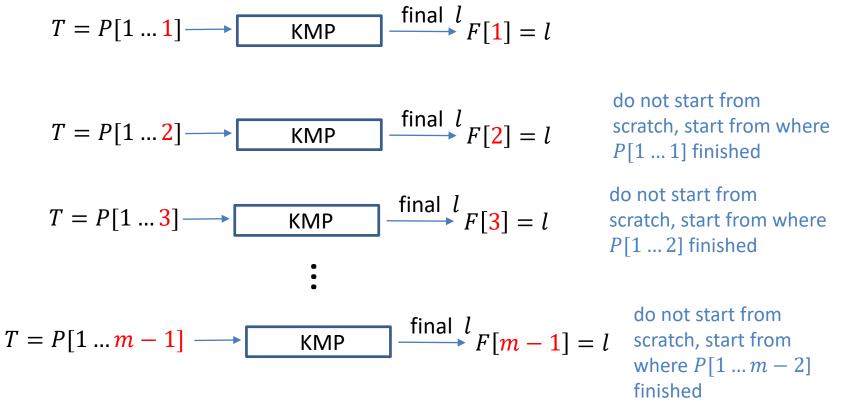
- start with l = 0
- text has two letters, can reach at most l = 2
- need at most F[0], F[1], and already have it

■ *j* = *m* − 1

 $T = P[1 \dots m - 1] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[m - 1] = l$ 

- start with l = 0
- text has m 1 letters, can reach at most l = m 1
- need at most F[0], F[1], ..., F[m-2], and already have it

#### Fast Computation of *F* : Big Idea Made Bigger



- Cost of passing P[1 ... 1], P[1 ... 2], ..., P[1 ... m − 1] through KMP is equal to the cost of passing just P[1 ... m − 1] through KMP
- In essence, we are just matching pattern with itself:

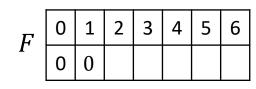
• 
$$T = P[1 ... m - 1], P = P$$

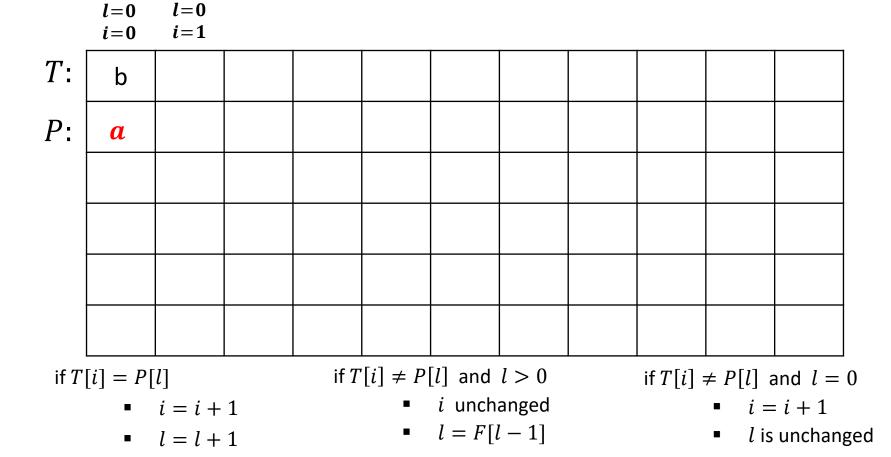
## Fast Computation of F

- Process  $T = P[1 \dots j]$ , F[j] = final l
- P = ababaca
- Initialize F[0] = 0

| F | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 1 | 0 |   |   |   |   |   |   |

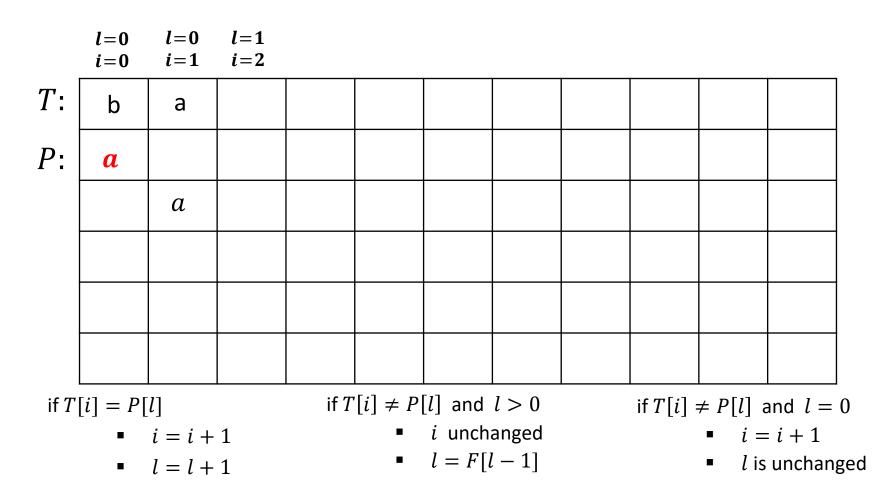
- Process  $T = P[1 \dots j]$ , F[j] = final l
- P = ababaca
- j = 1, T = P[1 ... j] = b





- Process  $T = P[1 \dots j]$ , F[j] = final l
- P = ababaca
- j = 2, T = P[1 ... j] = ba

| F | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 |   |   |   |   |



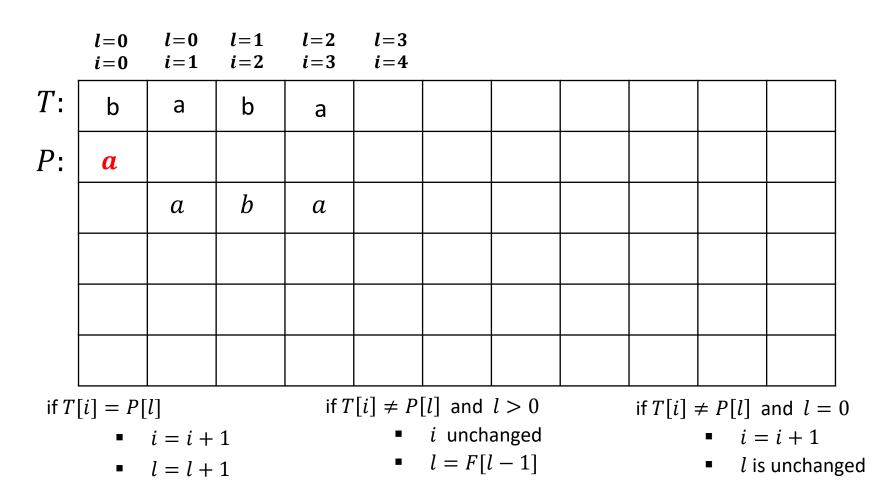
- Process  $T = P[1 \dots j]$ , F[j] = final l
- P = ababaca
- j = 3, T = P[1 ... j] = bab

|      | l=0<br>i=0 | l = 0<br>i = 1 | $l = 1 \\ i = 2$ | l=2<br>i=3 |              |               |        |                            |               |                | _   |
|------|------------|----------------|------------------|------------|--------------|---------------|--------|----------------------------|---------------|----------------|-----|
| T:   | b          | а              | b                |            |              |               |        |                            |               |                |     |
| P:   | a          |                |                  |            |              |               |        |                            |               |                |     |
|      |            | а              | b                |            |              |               |        |                            |               |                |     |
|      |            |                |                  |            |              |               |        |                            |               |                |     |
|      |            |                |                  |            |              |               |        |                            |               |                |     |
|      |            |                |                  |            |              |               |        |                            |               |                |     |
| if T | [i] = P[   | <i>l</i> ]     |                  | if T       | $[i] \neq P$ | [l] and       | l > 0  | if <i>T</i> [ <i>i</i> ] : | $\neq P[l]$ a | and $l =$      | 0   |
|      | -          | i = i + i      | 1                |            | •            | <i>i</i> unch | anged  |                            | • <i>i</i> =  | = <i>i</i> + 1 |     |
|      |            | l = l +        | 1                |            | •            | l = F[l       | ! – 1] |                            | ■ <i>l</i> is | unchan         | ged |

| F | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 2 |   |   |   |

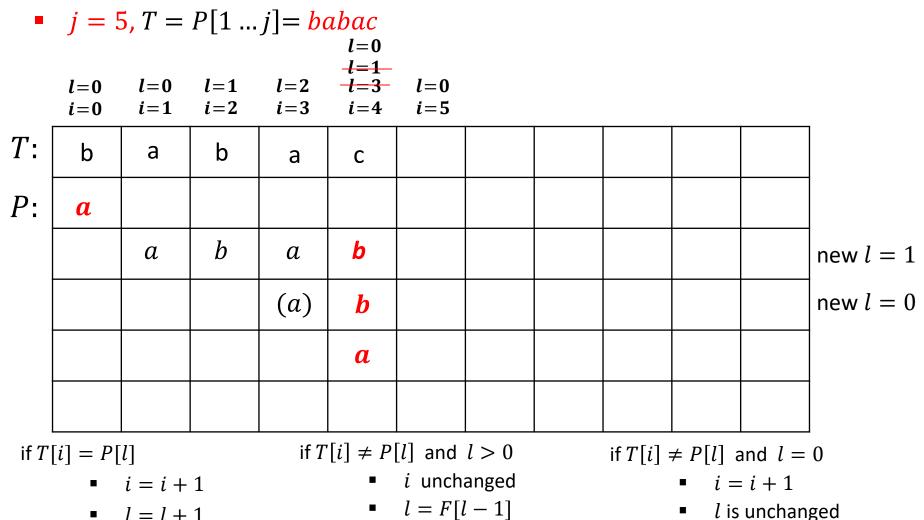
- Process  $T = P[1 \dots j]$ , F[j] = final l
- P = ababaca
- j = 4, T = P[1 ... j] = baba

| F | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 2 | 3 |   |   |



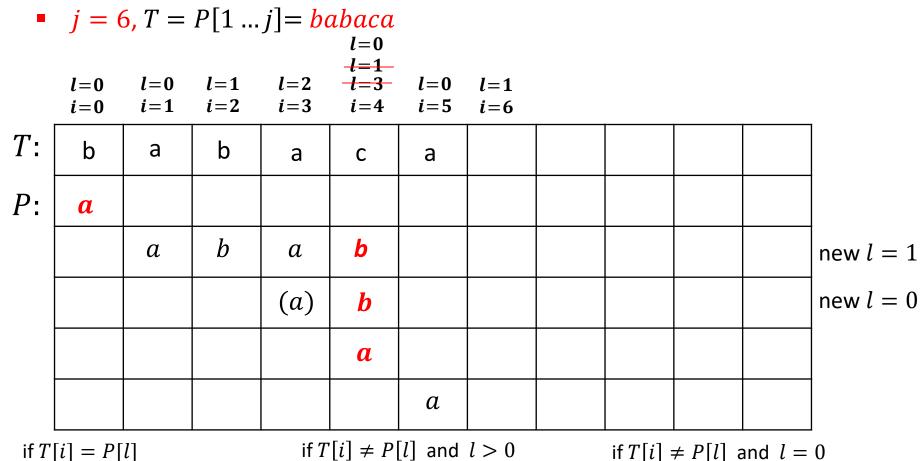
- Process  $T = P[1 \dots j], F[j] = final l$
- P = ababaca

• l = l + 1



| F | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 2 | 3 | 0 |   |

- Process  $T = P[1 \dots j]$ , F[j] = final l
- P = ababaca



 $[\iota] = I [\iota]$ 

- *i* = *i* + 1
- *l* = *l* + 1

• *i* unchanged

• 
$$l = F[l-1]$$

• i = i + 1

*l* is unchanged

| F | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 2 | 3 | 0 | 1 |

• P = ababaca

■ *l* = *l* + 1

| Matching $T = P[1 \dots m - 1]$ with pattern P, updating |
|----------------------------------------------------------|
| F[i] = l after each text letter <i>i</i> is processed    |

l=0

| F | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 2 | 3 | 0 | 1 |

• P = ababaca

| Matching $T = P[1 \dots m - 1]$ with pattern P, updating |
|----------------------------------------------------------|
| F[i] = l after each text letter <i>i</i> is processed    |

l=0

|             | l=0<br>i=1 | l=0<br>i=2 | l=1<br>i=3 | l=2<br>i=4  | $\frac{l=0}{l=1}$ $\frac{l=3}{i=5}$ | l=0<br>i=6    | l=1<br>i=7 |                          |               |                |             |
|-------------|------------|------------|------------|-------------|-------------------------------------|---------------|------------|--------------------------|---------------|----------------|-------------|
| <b>P</b> :  | b          | а          | b          | а           | С                                   | а             |            |                          |               |                |             |
| <i>P</i> :  | a          |            |            |             |                                     |               |            |                          |               |                |             |
|             |            | а          | b          | а           | b                                   |               |            |                          |               |                | new $l = 1$ |
|             |            |            |            | (a)         | b                                   |               |            |                          |               |                | new $l=0$   |
|             |            |            |            |             | a                                   |               |            |                          |               |                |             |
|             |            |            |            |             |                                     | а             |            |                          |               |                |             |
| if <b>P</b> | [i] = P[   | <i>l</i> ] |            | if <b>P</b> | $[i] \neq P$                        | [l] and       | l > 0      | if <b>P</b> [ <i>i</i> ] | $\neq P[l]$ a | and $l =$      | 0           |
|             | •          | i = i + i  | 1          |             | •                                   | <i>i</i> unch | -          |                          | • <i>i</i> =  | : <i>i</i> + 1 |             |
|             | •          | l = l +    | 1          |             | •                                   | l = F[l]      | l - 1]     |                          | ■ <i>l</i> is | unchan         | ged         |

| F | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 1 | 2 | 3 | 0 | 1 |

# **KMP: Computing Failure Array**

- Pseudocode is almost identical to KMP(T, P)
  - main difference: F[j] gets both used and updated
  - same code as in the example on previous slides, but we renamed *i* into *j*

```
failureArray(P)
P: String of length m (pattern)
      F[0] \leftarrow 0
       j \leftarrow 1 // \text{matching } P[1 \dots j]
       l \leftarrow 0
       while j < m \operatorname{do}
           if P[j] = P[l] // rule 1
                 l \leftarrow l + 1
                 F[i] \leftarrow l
                 i \leftarrow i + 1
            else if l > 0 // rule 2
               l \leftarrow F[l-1]
            else
                          // rule 3
               F[j] \leftarrow 0 \quad //l = 0
               i \leftarrow i + 1
```

# **KMP: FailureArray Runtime**

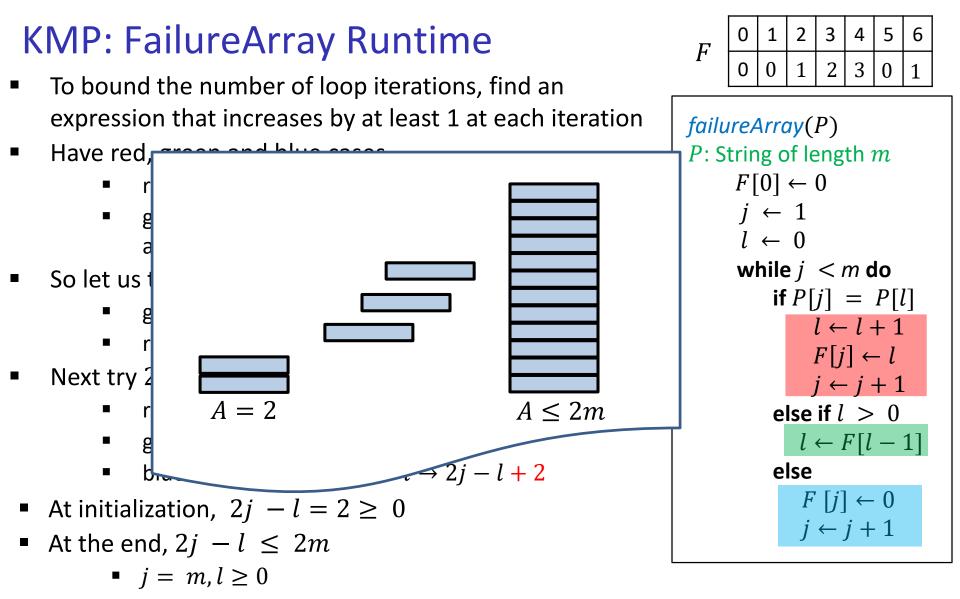
- To bound the number of loop iterations, find an expression that increases by at least 1 at each iteration
- Have red, green and blue cases
  - red + blue: j increases by 1
  - green: l decreases by at least  $1 \rightarrow -l$  increases by at least  $1 \rightarrow -l$
- So let us try j l
  - green + blue: increases by at least 1
  - red:  $j l \to (j + 1) (l + 1) = j l$ , no increase
- Next try 2j l
  - red:  $2j l \rightarrow 2(j + 1) (l + 1) \rightarrow 2j l + 1$
  - green: 2j − l increases by at least 1
  - blue:  $2j l \rightarrow 2(j + 1) l \rightarrow 2j l + 2$
- At initialization,  $2j l = 2 \ge 0$
- At the end,  $2j l \leq 2m$

• 
$$j = m, l \ge 0$$

 0
 1
 2
 3
 4
 5
 6

 0
 0
 1
 2
 3
 0
 1

failureArray(P) *P*: String of length *m*  $F[0] \leftarrow 0$  $i \leftarrow 1$  $l \leftarrow 0$ while  $j < m \operatorname{do}$ **if** P[i] = P[l] $l \leftarrow l + 1$  $F[j] \leftarrow l$  $i \leftarrow i + 1$ else if l > 0 $l \leftarrow F[l-1]$ else  $F[j] \leftarrow 0$  $j \leftarrow j + 1$ 



# KMP: FailureArray Runtime

- To bound the number of loop iterations, find an expression that increases by at least 1 at each iteration
- Have red, green and blue cases
  - red + blue: j increases by 1
  - green: l decreases by at least  $1 \rightarrow -l$  increases by at least 1  $\rightarrow -l$  increases by
- So let us try j l
  - green + blue: increases by at least 1
  - red:  $j l \to (j + 1) (l + 1) = j l$ , no increase
- Next try 2j l
  - red:  $2j l \rightarrow 2(j + 1) (l + 1) \rightarrow 2j l + 1$
  - green: 2*j* − *l* increases by at least 1
  - blue:  $2j l \rightarrow 2(j + 1) l \rightarrow 2j l + 2$
- At initialization,  $2j l = 2 \ge 0$
- At the end,  $2j l \leq 2m$

•  $j = m, l \ge 0$ 

- No more than 2m loop iterations, and at least m iterations
- Time is  $\Theta(m)$

| F | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| Γ | 0 | 0 | 1 | 2 | 3 | 0 | 1 |

failureArray(P) *P*: String of length *m*  $F[0] \leftarrow 0$  $i \leftarrow 1$  $l \leftarrow 0$ while  $j < m \operatorname{do}$ **if** P[j] = P[l] $l \leftarrow l + 1$  $F[j] \leftarrow l$  $i \leftarrow i + 1$ else if l > 0 $l \leftarrow F[l-1]$ else  $F[j] \leftarrow 0$  $j \leftarrow j + 1$ 

# KMP: Main Function Runtime

```
KMP(T, P)
     F \leftarrow failureArray(P)
     i \leftarrow 0
     i \leftarrow 0
     while i < n \operatorname{do}
             if P[j] = T[i]
                 if j = m - 1
                      return "found at guess i - m + 1"
                 else
                     i \leftarrow i + 1
                     j \leftarrow j + 1
             else // P[j] \neq T[i]
                 if i > 0
                     j \leftarrow F[j-1]
                 else
                     i \leftarrow i + 1
      return FAIL
```

#### KMP main function

- failureArray can be computed in  $\Theta(m)$  time
- Same analysis as for failure array gives  $\Theta(n)$
- Running time KMP altogether:  $\Theta(n+m)$ 
  - which is the same as  $\Theta(n)$  as  $m \le n$

#### Outline

#### String Matching

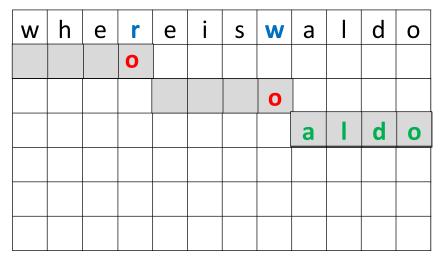
- Introduction
- Karp-Rabin Algorithm
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

## **Boyer-Moore Algorithm Motivation**

- Fastest pattern matching in practice on English Text
- Important components
  - Reverse-order searching
    - compare P with a guess moving backwards
  - When a mismatch occurs choose the better option among the two below
    - 1. Bad character heuristic
      - eliminate shifts based on mismatched character of T
    - 2. Good suffix heuristic
      - eliminate shifts based on the matched part (i.e.) suffix of P

#### Reverse Searching vs. Forward Searching

T= where is waldo, P = aldo



- r does not occur in P = aldo
- shift pattern past r
- w does not occur in P = aldo
- shift pattern past w
- bad character heuristic can rule out 
   many shifts with reverse searching

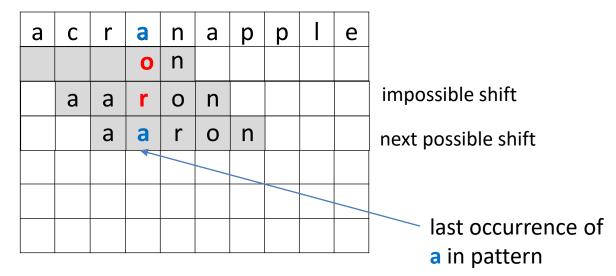
| w | h | е | r | е | i | S | W | а | d | 0 |
|---|---|---|---|---|---|---|---|---|---|---|
| а |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |

- w does not occur in P = aldo
- move pattern past w
- the first shift moves pattern past w
- no shifts are ruled out

bad character heuristic does not rule out any shifts with forward searching when the first character of the pattern is mismatched

#### What if Mismatched Text Character Occurs in *P*?

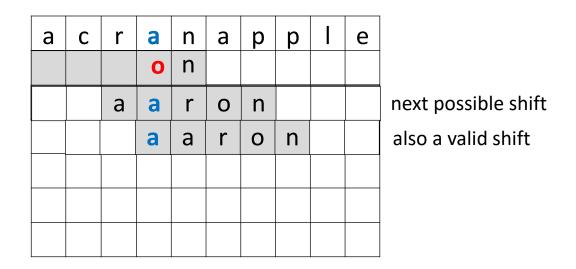
T = acranapple, P = aaron



- Mismatched character in the text is a
- Find **last** occurrence of **a** in *P*
- Shift the pattern to the right until **last** a in P aligns with a in text
  - all smaller shifts are impossible since they do not match a
- Precompute last occurrence of any letter before matching starts

#### **Bad Character Heuristic: Side Note**

T= acranapple, P = aaron

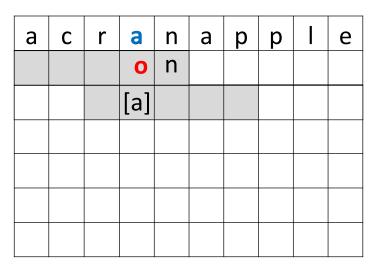


- If we shifted until the **first** a in P aligns with a in text
  - this would give a possible shift, but misses a previous possible shift, possibly leading to a missed pattern

#### Bad Character Heuristic: Full Version

• Extends to the case when mismatched text character does occur in P

T= acranapple, P = aaron

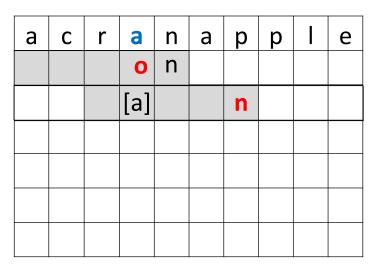


- Mismatched character in the text is a
- Shift the pattern to the right so that the last **a** in P aligns with **a** in text
- Continue matching the pattern (in reverse)

#### **Bad Character Heuristic: Full Version**

• Extends to the case when mismatched text character does occur in P

T= acranapple, P = aaron



- Mismatched character in the text is a
- Shift the pattern to the right so that the last **a** in P aligns with **a** in text
- Continue matching the pattern (in reverse)

- Compute the last occurrence array L(c) of any character in the alphabet
  - L(c) = -1 if character *c* does not occur in *P*, otherwise
  - L(c) =largest index j such that P[j] = c
- Example: *P* = aaron
  - initialization

| char | а  | n  | 0  | r  | all others |
|------|----|----|----|----|------------|
| L(c) | -1 | -1 | -1 | -1 | -1         |

| this means: | а  | b  | С  | d  | е  | f  | ••• | х  | у  | Z  |
|-------------|----|----|----|----|----|----|-----|----|----|----|
| this means. | -1 | -1 | -1 | -1 | -1 | -1 |     | -1 | -1 | -1 |

| 0  | 1  | 2  | 3  | 4  | 5  | <br>24 | 25 | 26 |
|----|----|----|----|----|----|--------|----|----|
| -1 | -1 | -1 | -1 | -1 | -1 | -1     | -1 | -1 |

- Compute the last occurrence array L(c) of any character in the alphabet
  - L(c) = -1 if character *c* does not occur in *P*, otherwise
  - L(c) =largest index j such that P[j] = c
- Example: *P* = aaron
  - computation

i = 0

| char | а | n  | 0  | r  | all others |
|------|---|----|----|----|------------|
| L(c) | 0 | -1 | -1 | -1 | -1         |

L is valid for P = a

- Compute the last occurrence array L(c) of any character in the alphabet
  - L(c) = -1 if character *c* does not occur in *P*, otherwise
  - L(c) =largest index j such that P[j] = c
- Example: *P* = aaron
  - computation

i = 1

| char | а | n  | 0  | r  | all others |
|------|---|----|----|----|------------|
| L(c) | 1 | -1 | -1 | -1 | -1         |

L is valid for P = aa

- Compute the last occurrence array L(c) of any character in the alphabet
  - L(c) = -1 if character *c* does not occur in *P*, otherwise
  - L(c) =largest index j such that P[j] = c
- Example: *P* = aaron
  - computation

i = 2

| char | а | n  | 0  | r | all others |
|------|---|----|----|---|------------|
| L(c) | 1 | -1 | -1 | 2 | -1         |

L is valid for P = aar

- Compute the last occurrence array L(c) of any character in the alphabet
  - L(c) = -1 if character *c* does not occur in *P*, otherwise
  - L(c) =largest index j such that P[j] = c
- Example: *P* = aaron
  - computation

| аа | ron |
|----|-----|
|    |     |

i = 3

| char | а | n  | 0 | r | all others |
|------|---|----|---|---|------------|
| L(c) | 1 | -1 | 3 | 2 | -1         |

L is valid for P = aaro

- Compute the last occurrence array L(c) of any character in the alphabet
  - L(c) = -1 if character *c* does not occur in *P*, otherwise
  - L(c) =largest index j such that P[j] = c
- Example: *P* = aaron
  - computation

aaron

| char | а | n | 0 | r | all others |
|------|---|---|---|---|------------|
| L(c) | 1 | 4 | 3 | 2 | -1         |

L is valid for P = aaron

*i* = 4

• Total time is  $O(m + |\Sigma|)$ 

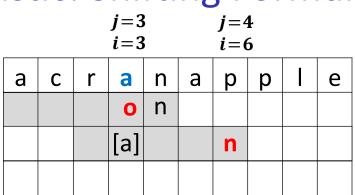
#### **Boyer-More Indexing**

- Same as in KMP
  - maintain variables *i* and *j*
  - *j* is the position in the pattern
  - *i* is the position in the text where we do the next check
  - check is performed by determining if T[i] = P[j]
  - current shift is i j

#### **Bad Character Heuristic: Shifting Formula**

| char | а | n | 0 | r | all others |
|------|---|---|---|---|------------|
| L(c) | 1 | 4 | 3 | 2 | -1         |

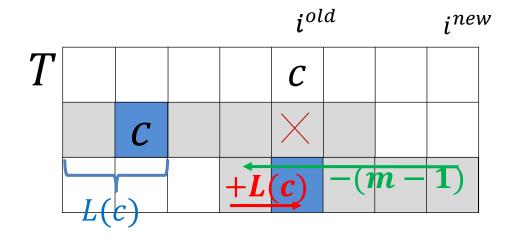
T = acranapple, P = aaron



- Let L(c) be the last occurrence of character c in P
  - $L(\mathbf{a}) = 1$  in our example
- When mismatch occurs at text position *i*, pattern position *j*, update
  - j = m 1
    - start matching at the end of the pattern
  - i = i + m 1 L(c)
  - for our example
    - *j* = 5 − 1 = 4
    - i = 3 + 5 1 1 = 6

#### Bad Character Heuristic: Shifting Formula Explained

- Text character is c at the mismatch position i in the text
- i = i + m 1 L(c)



$$i^{new} - (m-1) + L(c) = i^{old}$$
$$i^{new} = i^{old} + m - 1 - L(c)$$
$$i = i + m - 1 - L(c)$$

#### **Bad Character Heuristic: Important Use Condition**

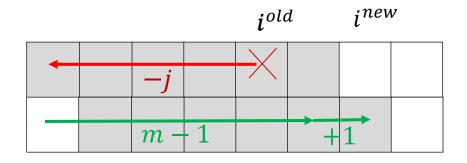
- Text character is *c* at the mismatch position *i* in the text
- i = i + m 1 L(c)
- Old shift: i j
- New shift: i + (m 1) L(c) (m 1) = i L(c)
- If L(c) > j, new shift < old shift, shifts P in the wrong direction, not useful
  - we already ruled that shift out, no point to come back to it
- Example: T = acranapple, P = reroa



- bad character heuristic makes sense to used only if L(c) < j
  - $L(c) \neq j$  in case of a mismatch

#### Bad Character Heuristic: Brute-Force Step

- If L(c) > j
  - pattern would shift in wrong direction if used bad character heuristic
  - therefore, do brute-force step
  - *j* = *m* − 1
  - i = i j + m



$$i^{old} -j +m - 1 +1 = i^{new}$$
$$i^{new} = i^{old} - j + m$$
$$i = i - j + m$$

#### **Bad Character Heuristic: Unified Formula**

• If 
$$L(c) < j$$
  
•  $j = m - 1$   
•  $i = i + m - 1 - L(c)$ 

• If 
$$L(c) > j$$

• 
$$j = m - 1$$

• 
$$i = i - j + m$$

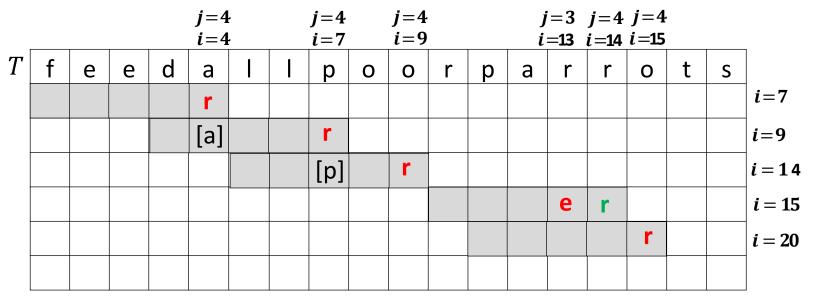
Unified formula for *i* that works in all cases

$$i = i + m - 1 - \min\{L(c), j - 1\}$$

#### **Boyer-More Example**

| char | а | e | р | r | others |
|------|---|---|---|---|--------|
| L(c) | 1 | 3 | 2 | 4 | -1     |

P = paper



Unified formula for *i* that works in all cases

not found!

 $i = i + m - 1 - \min\{L(c), j - 1\}$ 

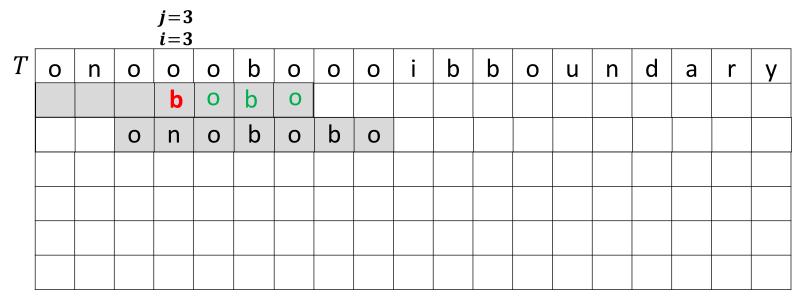
#### **Boyer-Moore Algorithm**

```
BoyerMoore(T, P)
     L \leftarrow last occurrence array computed from P
    j \leftarrow m-1
     i \leftarrow m-1
     while i < n and j \ge 0 do //current guess begins at index i - j
           if T[i] = P[j] then
                  i \leftarrow i - 1
                  j \leftarrow j - 1
           else
                  i \leftarrow i + m - 1 - \min\{L(c), j - 1\}
                  j \leftarrow m-1
    if j = -1 return "found at shift i + 1" // i moved one position to
                                                 // the left of the first char in T
```

else return FAIL

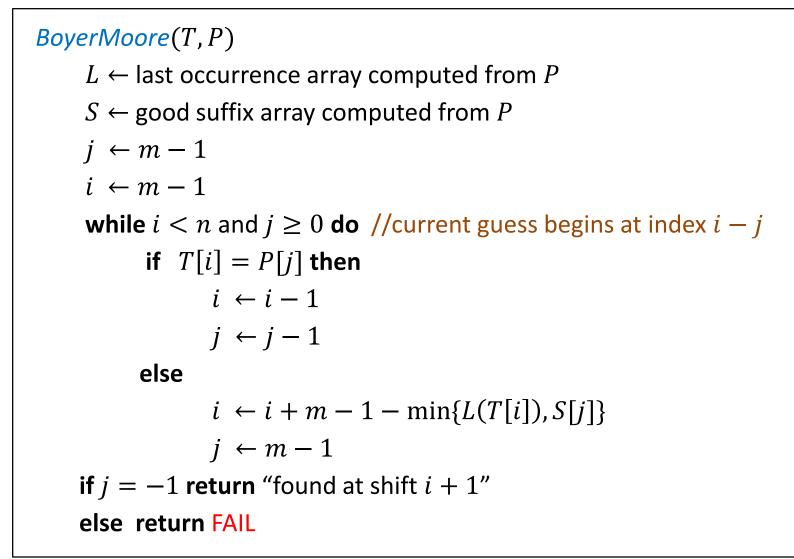
# **Good Suffix Heuristic**

- Idea is similar to KMP, but applied to the suffix, since matching backwards
  - P = onobobo



- Text has letters obo
- Do the smallest shift so that obo fits
- Can precompute this from the pattern itself, before matching starts
  - 'if failure at j = 3, shift pattern by 2'
- Continue matching from the end of the new shift
- Will not study the precise way to do it

#### Boyer-Moore Algorithm with Good Suffix



# **Boyer-Moore Summary**

- Boyer-Moore performs very well, even when using only bad character heuristic
- Worst case run time is O(nm) with bad character heuristic only, but in practice much faster
- On typical English text, Boyer-Moore looks only at  $\approx$ 25% of text *T*
- With good suffix heuristic, can ensure  $O(n + m + |\Sigma|)$  run time
  - no details

## Outline

#### String Matching

- Introduction
- Karp-Rabin Algorithm
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

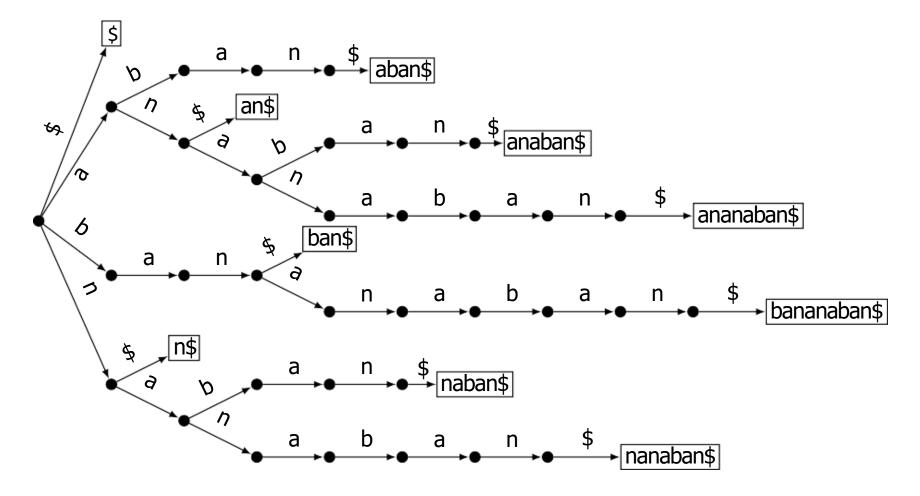
# Suffix Tree: Trie of Suffixes

- What if we search for many patterns *P* within the same fixed text *T*?
- Idea: preprocess the text T rather than pattern P
- Observation: P is a substring of T if and only if P is a prefix of some suffix of T
- Example: P = ish T = establishmentsuffix
- Store all suffixes of T in a trie
- To save space
  - use compressed trie
  - store suffixes implicitly via indices into T
- This is called a **suffix tree**

# Trie of suffixes: Example

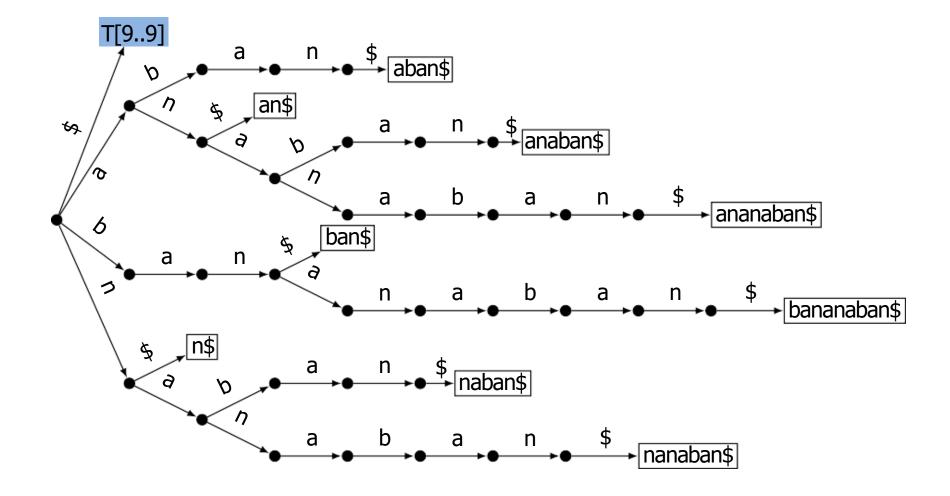
T = bananaban

**S** = {bananaban\$, ananaban\$, nanaban\$, anaban\$, naban\$,..., ban\$, n\$, \$}

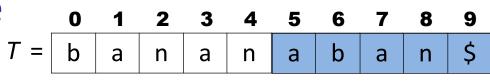


# Trie of suffixes: Example

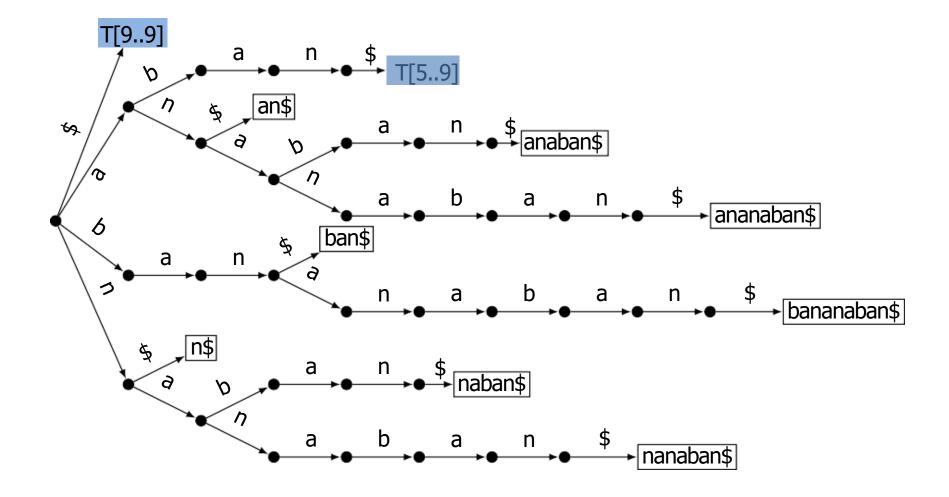
Store suffixes via indices



## Trie of suffixes: Example

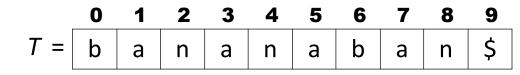


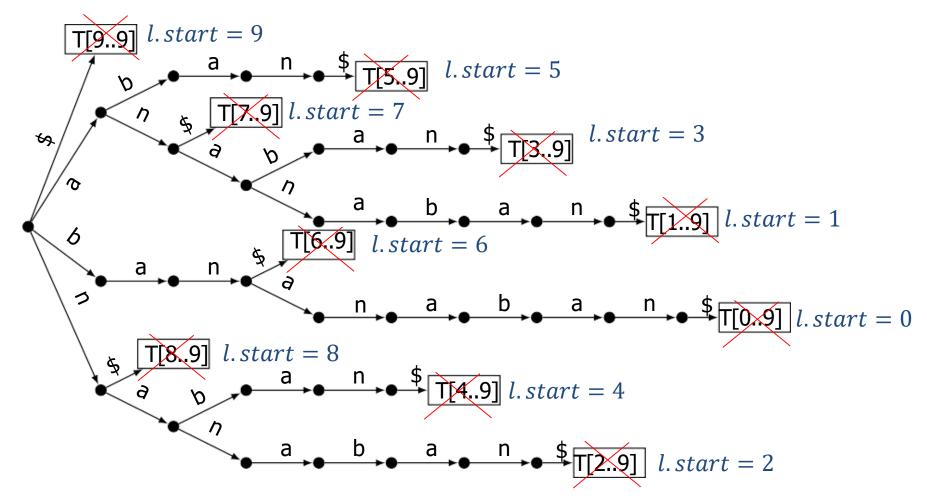
Store suffixes via indices



# **Tries of suffixes**

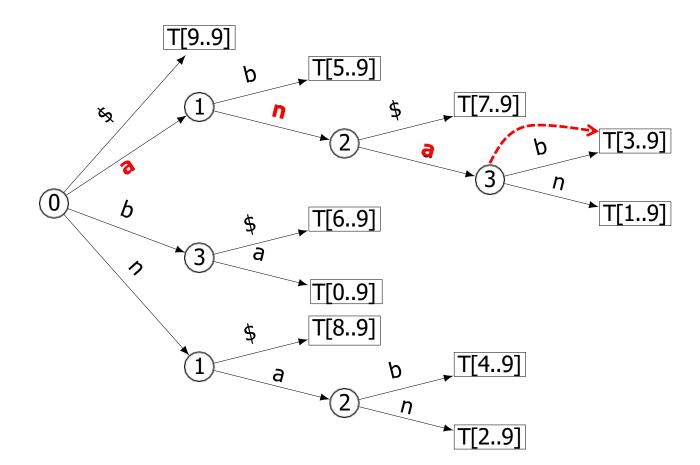
 In actual implementation, each leaf *l* stores the start of its suffix in variable *l.start*





## Suffix tree

- Suffix tree: compressed trie of suffixes
- If *P* occurs in the text, it is a prefix of one (or more) strings stored in the trie
- Have to modify search in a trie to allow search for a prefix



# Building Suffix Tree

- Building
  - text T has n characters and n + 1 suffixes
  - can build suffix tree by inserting each suffix of T into compressed trie
    - takes  $\Theta(|\Sigma|n^2)$  time
  - there is a way to build a suffix tree of T in  $\Theta(|\Sigma|n)$  time
    - beyond the course scope
- Pattern Matching
  - essentially search for P in compressed trie
    - some changes needed, since P may only be prefix of stored word
  - run-time is
    - $O(|\Sigma|m)$ , assuming each node stores children in a linked list
    - O(m), assuming each node stores children in an array
- Summary
  - theoretically good, but construction is slow or complicated and lots of spaceoverhead
  - rarely used in practice

## Outline

#### String Matching

- Introduction
- Karp-Rabin Algorithm
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

# **Suffix Arrays**

- Relatively recent development (popularized in the 1990s)
- Sacrifice some performance for simplicity
  - slightly slower (by a log-factor) than suffix trees
  - much easier to build
  - much simpler pattern matching
  - very little space, only one array
- Idea
  - store suffixes implicitly, by storing start indices
  - store the sorting permutation of the suffixes in *T*

| Suffix Array Example       |                       | 0              | 1 | 2 | 3 | 4 | 5                        | 6          | 7           | 8      | 9   |   |
|----------------------------|-----------------------|----------------|---|---|---|---|--------------------------|------------|-------------|--------|-----|---|
| Suffix Array Example $T =$ |                       | b              | а | n | а | n | а                        | b          | а           | n      | \$  |   |
|                            |                       |                | 0 | 1 | 2 | 3 | 4                        | 5          | 6           | 7      | 8   | 9 |
|                            |                       | Suffix Array = | 9 | 5 | 7 | 3 | 1                        | 6          | 0           | 8      | 4   | 2 |
|                            | i                     |                |   |   | 1 |   |                          |            |             |        |     | I |
| i                          | suffix $T[i \dots n]$ | _              |   |   |   | j | <b>A</b> <sup>s</sup> [] | <b>i</b> ] |             |        |     |   |
| 0                          | bananaban\$           |                |   |   |   | 0 | 9                        |            | \$          |        |     |   |
| 1                          | ananaban\$            |                |   |   |   | 1 |                          | 5          |             | aban\$ |     |   |
| 2                          | nanaban\$             |                |   |   |   | 2 | 7                        |            | an\$        |        |     |   |
| 3                          | anaban\$              |                |   |   |   | 3 | 3 3                      |            | anaban\$    |        |     |   |
| 4                          | 4 naban\$             |                |   |   |   | 4 | 1                        |            | ananaban\$  |        |     |   |
| 5                          | aban\$                | -              |   |   |   | 5 | 6                        |            | ban\$       |        |     |   |
| 6                          | ban\$                 | -              |   |   |   | 6 | 0                        |            | bananaban\$ |        |     |   |
| 7                          | an\$                  |                |   |   |   | 7 | 8                        |            | n\$         |        |     |   |
| 8                          | n\$                   | -              |   |   |   | 8 | 4                        |            | nab         | an\$   |     |   |
| 9                          | \$                    | -              |   |   |   | 9 | 2                        |            | nan         | abar   | ı\$ |   |

## Suffix Array Construction

• Easy to construct using MSD-Radix-Sort (pad with any character to get the same length)

b

а

2

n

3

а

n

5

а

6

b

7

а

8

n

9

\$

|             | round 1     | round 2     | <br>round <i>n</i> |
|-------------|-------------|-------------|--------------------|
| bananaban\$ | \$*****     | \$****      | \$****             |
| ananaban\$* | ananaban\$  | aban\$****  | aban\$****         |
| nanaban\$** | anaban\$*** | ananaban\$  | an\$******         |
| anaban\$*** | aban\$****  | anaban\$**  | anaban\$***        |
| naban\$**** | an\$******  | an\$*****   | ananaban\$*        |
| aban\$****  | bananaban\$ | bananaban\$ | ban\$*****         |
| ban\$*****  | ban\$*****  | ban\$*****  | bananaban\$        |
| an\$******  | nanaban\$** | nanaban\$** | n\$*******         |
| n\$*******  | naban\$**** | naban\$**** | naban\$****        |
| \$*******   | n\$******   | n\$*****    | nanaban\$**        |

- Fast in practice, suffixes are unlikely to share many leading characters
- But worst case run-time is  $\Theta(n^2)$ 
  - recursion depth is n,  $\Theta(n)$  time at each recursion depth, example:  $T = aa \dots a$

# Suffix Array Construction

- Idea: we do not need n rounds
  - $\Theta(\log n)$  rounds enough  $\rightarrow \Theta(n \log n)$  run time
- Construction-algorithm
  - MSD-radix sort plus some bookkeeping
    - needs only one extra array
    - easy to implement
  - details are covered in an algorithms course

- Suffix array stores suffixes (implicitly) in sorted order
- Idea: apply binary search

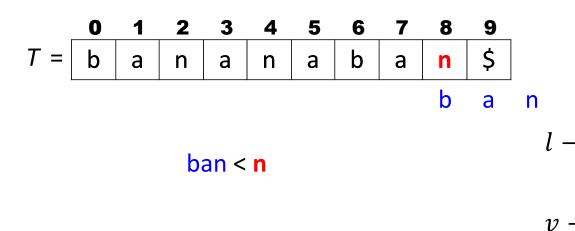
**A**<sup>s</sup>[**j**] j  $l \rightarrow$ \$ 9 0 P = ban1 5 aban\$ 7 an\$ 2 9 0 1 2 3 5 6 7 8 4 \$ 3 3 T =b b а a n а n а n 1 4  $v \rightarrow$ b а n

ban > a

anaban\$ ananaban\$ 5 6 ban\$ bananaban\$ 6 0 n\$ 7 8 8 naban\$ 4 9 2 nanaban\$  $r \rightarrow$ 

- Suffix array stores suffixes (implicitly) in sorted order
- Idea: apply binary search

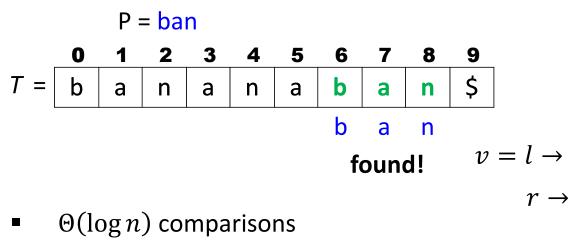
P = ban



|               | j | A <sup>s</sup> [j] |             |
|---------------|---|--------------------|-------------|
|               | 0 | 9                  | \$          |
|               | 1 | 5                  | aban\$      |
|               | 2 | 7                  | an\$        |
|               | 3 | 3                  | anaban\$    |
|               | 4 | 1                  | ananaban\$  |
| →             | 5 | 6                  | ban\$       |
|               | 6 | 0                  | bananaban\$ |
| $\rightarrow$ | 7 | 8                  | n\$         |
|               | 8 | 4                  | naban\$     |
| $\rightarrow$ | 9 | 2                  | nanaban\$   |

r -

- Suffix array stores suffixes (implicitly) in sorted order
- Idea: apply binary search



- Each comparison is  $strcmp(P, T[A^s[v] ... A^s[v + m - 1]])$
- $\Theta(m)$  per comparison  $\Rightarrow$  run-time is  $\Theta(m \log n)$

| j | <b>A<sup>s</sup>[j</b> ] |             |
|---|--------------------------|-------------|
| 0 | 9                        | \$          |
| 1 | 5                        | aban\$      |
| 2 | 7                        | an\$        |
| 3 | 3                        | anaban\$    |
| 4 | 1                        | ananaban\$  |
| 5 | 6                        | ban\$       |
| 6 | 0                        | bananaban\$ |
| 7 | 8                        | n\$         |
| 8 | 4                        | naban\$     |
| 9 | 2                        | nanaban\$   |

```
SuffixArray-Search(T, P, A^{s}[0 ... n - 1])
A^s: suffix array of T, P: pattern
      l \leftarrow 0, r \leftarrow n-1
     while l < r
             v \leftarrow \left| \frac{l+r}{2} \right|
              i \leftarrow A^{s}[v]
            // assume strcmp handles out of bounds suitably
            s \leftarrow strcmp(P, T[i \dots i + m - 1])
            if (s > 0) do l \leftarrow v + 1
            else (s < 0) do r \leftarrow v - 1
             else return 'found at guess T[i \dots i + m - 1]'
      if strcmp(P, T[A^{s}[l], A^{s}[l] + m - 1]) = 0
            return 'found at guess T[A^s[l], A^s[l] + m - 1]]'
      return FAIL
```

## Outline

#### String Matching

- Introduction
- Karp-Rabin Algorithm
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

# **String Matching Conclusion**

|                                         | Brute<br>Force | KR              | BM                                                       | КМР  | Suffix Trees                                                              | Suffix Array                          |
|-----------------------------------------|----------------|-----------------|----------------------------------------------------------|------|---------------------------------------------------------------------------|---------------------------------------|
| preproc.                                | _              | 0(m)            | $O(m +  \Sigma )$                                        | 0(m) | $\begin{array}{l} O( \Sigma n^2) \\ \rightarrow O( \Sigma n) \end{array}$ | $0(nlogn) \rightarrow 0(n)$           |
| search<br>time<br>(preproc<br>excluded) | 0(nm)          | O(n+m) expected | $O(n +  \Sigma )$<br>with good suffix<br>often<br>better | 0(n) | 0(m)                                                                      | O(mlogn)<br>$\rightarrow O(m + logn)$ |
| extra space                             | _              | 0(1)            | $O(m +  \Sigma )$                                        | 0(m) | 0(n)                                                                      | 0 (n)                                 |

- Algorithms stop once they found one occurrence
- Most of them can be adapted to find *all* occurrences within the same worst-case run-time