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@ Motivation
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Different levels of memory

Current architectures:
o registers (very fast, very small)
@ cache L1, L2 (still fast, less small)
@ main memory

e disk or cloud (slow, very large)

General question: how to adapt our algorithms to take the memory
hierarchy into account, avoiding transfers as much as possible?

Observation: Accessing a single location in external memory
(e.g. hard disk) automatically loads a whole block (or “page”).
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The External-Memory Model (EMM)

external memory — size unbounded

transfer in blocks of B cells (slow)

internal memory — size M

random access (fast)

New objective: revisit all algorithms/data structures with the objective of
minimizing block transfers (“probes”, “disk transfers”, “page loads”)
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Outline

@ External Memory

@ Stream-based algorithms
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Streams and external memory

If input and output are handled via streams, then we automatically use
©(g) block transfers.

el e e e e el LT T T T T T T T T T T LT T [ [T [[xlxlx[x)- - - | xternal
N —
nexmmjt for next block of input memory

transfer when empty transfer when full

Ay [(CEEE

internal memor
top work on Y

tail
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Streams and external memory

If input and output are handled via streams, then we automatically use
©(g) block transfers.

el e e e e el LT T T T T T T T T T T LT T [ [T [[xlxlx[x)- - - | xternal
N —
nexmwt for next block of input memory

transfer when full

Iintern memor’
work on ernal memory

top tail

transfer when empty

So can do the following with ©(5) block transfers:

@ Pattern matching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore
(This assumes that pattern P fits into internal memory.)

@ Text compression: Huffman, run-length encoding, Lempel-Ziv-Welch
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Outline

@ External Memory

@ External sorting
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Sorting in external memory

Recall: The sorting problem:

Given an array A of n numbers, put them into sorted order.

Now assume n is huge and A is stored in blocks in external memory.
@ Heapsort was optimal in time and space in RAM model

o But: Heapsort accesses A at indices that are far apart
~ typically one block transfer per array access
~ typically ©(nlog n) block transfers.
Can we do better?
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Sorting in external memory

Recall: The sorting problem:
Given an array A of n numbers, put them into sorted order.

Now assume n is huge and A is stored in blocks in external memory.
@ Heapsort was optimal in time and space in RAM model
@ But: Heapsort accesses A at indices that are far apart
~ typically one block transfer per array access

~ typically ©(nlog n) block transfers.
Can we do better?

o Mergesort adapts well to external memory. Recall algorithm:
» Split input in half
» Sort each half recursively — two sorted parts
» Merge sorted parts.

Key idea: Merge can be done with streams.
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Merge

Merge(S1, S2, S)

51, Sy input streams have items in sorted order, S: output stream
1 while S; or S, is not empty do

2. if (51 is empty) S.append(Sz.pop())

3. else if (S; is empty) S.append(S1.pop())

4 else if (Sy.top() < Sa.top()) S.append(Sy.pop())

5 else S.append(S;.pop())

internal memory

when empty | 5 [ufefs] ]| et

sle] [[1] L[ [2[a]s
5

Here B =5
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Mergesort in external memory

@ Merge uses streams 51, 5;, S.
=- Each block in the stream only transferred once.

@ So Merge takes ©(g) block-transfers.
@ Recall: Mergesort uses [log, n] rounds of merging.

= Mergesort uses O(3 - log, n) block-transfers.

Not bad, but we can do better.
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Towards d-way Mergesort

Observe: We had space left in internal memory during merge.

::E:rs‘feel;nplilock 5 n.- transfer block

when full

T
T

@ We use only three blocks, but typically M > 3B.
o Idea: We could merge d parts at once.

@ Here d = % — 1 so that d+1 blocks fit into internal memory.

transfer block
when empty

S1
S
S3
Sa

[mfefs] [ ]
! transfer block
OEEEN (Tl s i
! T
(1210 s [4] ]
T

[o]7

T
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d-way merge

d-way-merge(Sy,...,54,5)
Si1,...,S4: input streams have items in sorted order, S: output stream
1. P < empty min-oriented priority queue
2. for i« 1to ddo P.insert( (S.top(),i))
// each item in P keeps track of its input-steam

while P is not empty do

(x, i) + P.deleteMin()

S.append(S;.pop())

if S; is not empty do P.insert( (S;.top(),i))

ook W

siufss] [ ] P
transfer block i

@ transfer block
when s |5, [6] ] | [T T T2[x]s
= T
sEBR ] ¢ ©
T

sG] @
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d-way merge

@ We use a min-oriented priority queue P to find the next item to add
to the output.

» This is irrelevant for the number of block transfers.

» But there is no space-overhead needed for a priority queue.
(Recall: heaps are typically implemented as arrays.)

» And with this the run-time (in RAM-model) is O(nlog d).

@ The items in P store not only the next key but also the index of the
stream that contained the item.

» With this, can efficiently find the stream to reload from.
@ We assume d is such that d + 1 blocks and P fit into main memory.

@ The number of block transfers then is again O(g3).
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d-way merge

@ We use a min-oriented priority queue P to find the next item to add
to the output.

» This is irrelevant for the number of block transfers.

» But there is no space-overhead needed for a priority queue.
(Recall: heaps are typically implemented as arrays.)

» And with this the run-time (in RAM-model) is O(nlog d).

@ The items in P store not only the next key but also the index of the
stream that contained the item.

» With this, can efficiently find the stream to reload from.
@ We assume d is such that d + 1 blocks and P fit into main memory.

@ The number of block transfers then is again O(g3).

How does d-way merge help to improve external sorting?
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Towards d-way Mergesort

Recall: Mergesort uses [log, n] rounds of splitting-and-merging.

[logy n]

aaaaa f size 64

[ Size 3 [ Size 3

array of ] array of ]
array of size 16 array of size 16 array of size 16 array of size 16

T

MRRRACEALALL LA AAALA R
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Towards d-way Mergesort

Observe: If we split and merge d-ways, there are fewer rounds.

| BREBEAE

@ Number of rounds is now [log, n]

@ We choose d such that each round uses ©(3) block transfers.
(Then the number of block transfers is ©(log, n- 3).)

e Two further improvements:

» Proceed bottom-up (while-loops) rather than top-down (recursions).
» Save more rounds by starting immediately with runs of length M.
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d-way mergesort

External (B = 2):

[39] 5 [28]22]10[33]29[37] 8 [30]54[40]31]52]21]45]35[11]42[53]13[12[49[36] 4 [14]27] 9 [44] 3 [32[15[43] 2 [17] 6 [46]23[20] 1 [24] 7 [18[47]26]16[48]50]

Internal (M = 8):

@ Create 3; sorted runs of length M.
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d-way mergesort

External (B = 2):

[39] 5 [28]22[10[33]29[37] 8 [30]54[40]31]52]21]45]35[11]42[53[13[12[49[36] 4 [14]27] 9 [44] 3 [32[15[43] 2 [17] 6 [46]23[20] 1 [24] 7 [18[47]26]16[48]50]

Internal (M = 8):
39| 5 [28]22[10[3329]37|

@ Create 3; sorted runs of length M.
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d-way mergesort

External (B = 2):

[39] 5 [28]22[10[33]29[37] 8 [30]54[40]31]52]21]45]35[11]42[53[13[12[49[36] 4 [14]27] 9 [44] 3 [32[15[43] 2 [17] 6 [46]23[20] 1 [24] 7 [18[47]26]16[48]50]

Internal (M = 8):
| 5 [10]22]28[29]33(37]39]

@ Create 3; sorted runs of length M.
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d-way mergesort

External (B = 2):

[5]10]22]28]29]33][37[39] 8 [30]54[40]31]52]21]45]35[11]42[53][13[12[49[36] 4 [14]27] 9 [44] 3 [32[15[43] 2 [17] 6 [46]23[20] 1 [24] 7 [18[47]26]16[48]50]

sorted run

Internal (M = 8):

@ Create 3; sorted runs of length M.
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d-way mergesort

External (B = 2):

[5 J10[22]28]29[33]37[39] 8 [21[30[31[40[45]52]54]11[12]13[35]36[42[49[53] 3 | 4 | 9 [14[15]27[32[44] 1 [ 2] 6 [17[20]23[43]46] 7 [16[18]24]26]47[48]50]

sorted run sorted run sorted run sorted run sorted run sorted run

Internal (M = 8):

@ Create g; sorted runs of length M. ©(3) block transfers
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d-way mergesort

External (B = 2):

[510]22]28]29]33]37[39] 8 ]21][30[31[40]45]52]54[11[12]13[35]36[42[49[53] 3 | 4 | 9 [14[15]27[32[44] 1 [ 2 ] 6 [17[20]23[43]46] 7 [16[18]24]26]47[48]50]

sorted run sorted run sorted run sorted run sorted run sorted run

Internal (M = 8):
| 5 |10|| 8 |21||11|12|| | | (priority queue not shown)

5 S S3 s

@ Create f; sorted runs of length M. ©(3) block transfers
@ Merge the first d =~ % — 1 sorted runs using d-Way-Merge
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d-way mergesort

External (B = 2):

[510]22]28]29]33]37[39] 8 ]21][30[31[40]45]52]54[11[12]13[35]36[42[49[53] 3 | 4 | 9 [14[15]27[32[44] 1 [ 2 ] 6 [17[20]23[43]46] 7 [16[18]24]26]47[48]50]

sorted run sorted run sorted run sorted run sorted run sorted run

Internal (M = 8):
| |10|| 8 |21||11|12|| 5 | | (priority queue not shown)

5 S S3 s

@ Create f; sorted runs of length M. ©(3) block transfers
@ Merge the first d =~ % — 1 sorted runs using d-Way-Merge
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d-way mergesort

External (B = 2):

[510]22]28]29]33]37[39] 8 ]21][30[31[40]45]52]54[11[12]13[35]36[42[49[53] 3 | 4 | 9 [14[15]27[32[44] 1 [ 2 ] 6 [17[20]23[43]46] 7 [16[18]24]26]47[48]50]

sorted run sorted run sorted run sorted run sorted run sorted run

Internal (M = 8):
| |10|| |21||11|12|| 5 | 8 | (priority queue not shown)

5 S S3 s

@ Create f; sorted runs of length M. ©(3) block transfers
@ Merge the first d =~ % — 1 sorted runs using d-Way-Merge
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d-way mergesort

External (B = 2):

[510]22]28]29]33]37[39] 8 ]21][30[31[40]45]52]54[11[12]13[35]36[42[49[53] 3 | 4 | 9 [14[15]27[32[44] 1 [ 2 ] 6 [17[20]23[43]46] 7 [16[18]24]26]47[48]50]

sorted run sorted run sorted run sorted run sorted run sorted run

GO I T I T I T T I I I I I I I T P I T I T T TTT]

Internal (M = 8):
| | ]_0| | |21 | | 11 | ]_2| | | | (priority queue not shown)

5 S S3 s

@ Create f; sorted runs of length M. ©(3) block transfers
@ Merge the first d =~ % — 1 sorted runs using d-Way-Merge
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d-way mergesort

External (B = 2):

[510]22]28]29]33]37[39] 8 ]21][30[31[40]45]52]54[11[12]13[35]36[42[49[53] 3 | 4 | 9 [14[15]27[32[44] 1 [ 2 ] 6 [17[20]23[43]46] 7 [16[18]24]26]47[48]50]

sorted run sorted run sorted run sorted run sorted run sorted run

LTI T I I T I T T I I I T I I T I T I P T II T I T I T IITTT]

Internal (M = 8):
| | | | |21 | | 11 | ]_2| | ]_0| | (priority queue not shown)

5 S S3 s

@ Create f; sorted runs of length M. ©(3) block transfers
@ Merge the first d =~ % — 1 sorted runs using d-Way-Merge
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d-way mergesort

External (B = 2):

[T _]22]28]29]33]37[39] 8]21]30[31[40]45]52]54[11[12]13[35]36[42[49[53] 3 | 4 | 9 [14[15]27[32[44] 1 [ 2 ] 6 [17[20]23[43]46] 7 [16[18]24]26]47[48]50]

sorted run sorted run sorted run sorted run sorted run sorted run

LTI T I I T I T T I I I T I I T I T I P T II T I T I T IITTT]

Internal (M = 8):
22]28]| |21][11[12][10] | (prioity queue not shown)

5 S S3 s

@ Create f; sorted runs of length M. ©(3) block transfers
@ Merge the first d =~ % — 1 sorted runs using d-Way-Merge
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d-way mergesort

External (B = 2):

[T _]22]28]29]33]37[39] 8]21]30[31[40]45]52]54[11[12]13[35]36[42[49[53] 3 | 4 | 9 [14[15]27[32[44] 1 [ 2 ] 6 [17[20]23[43]46] 7 [16[18]24]26]47[48]50]

sorted run sorted run sorted run sorted run sorted run sorted run

LTI T I I T I T T I I I T I I T I T I P T II T I T I T IITTT]

Internal (M = 8):
122]28]| [21]| [12|[10]11] (prioiy queue ot shown)

5 S S3 s

@ Create f; sorted runs of length M. ©(3) block transfers
@ Merge the first d =~ % — 1 sorted runs using d-Way-Merge

Hunt, Veksler (CS-UW) CS240 — Module 11 Winter 2023 13 / 36



d-way mergesort

External (B = 2):

[T _]22]28]29]33]37[39] 8]21]30[31[40]45]52]54[11[12]13[35]36[42[49[53] 3 | 4 | 9 [14[15]27[32[44] 1 [ 2 ] 6 [17[20]23[43]46] 7 [16[18]24]26]47[48]50]

sorted run sorted run sorted run sorted run sorted run sorted run

(slfopa] [ [T TITTITITITTIITITITTIITITITITITIITITITTIITITIT]

Internal (M = 8):
|22 |28| | |21 | | | ]_2| | | | (priority queue not shown)

5 S S3 s

@ Create f; sorted runs of length M. ©(3) block transfers
@ Merge the first d =~ % — 1 sorted runs using d-Way-Merge
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d-way mergesort

External (B = 2):
LTI

L T T T T T T T I T 1T I3]4l9]4[1s[27]32]44] 1]2] 6 [17]20[23]43[46] 7 [16]18]24]26]47]48]50]

sorted run sorted run sorted run

[5 [ 8 [no[u112[13[21]22[8]20[3031[33]35[36]37[30fa0fa2fasaofs2[s3[s4] [ [ [ [ [ [T [T [T T TTTTTTTTTT]

sorted run

Internal (M = 8):

S S S3 s

| | | | | | (priority queue not shown)

@ Create f; sorted runs of length M. ©(3) block transfers
@ Merge the first d ~ % — 1 sorted runs using d-Way-Merge
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d-way mergesort

External (B = 2):
LTI I I P P P P PP P eI P PP

[5 [ 8 ]10[11]12[13[21[22]28]29]30[31[33][35]36[37[39]40]42[45]49[52[53[54] 1 [ 2 [ 3[ 4] 6 [ 7 [ 9 [14]1516]17[18[20[23]24]26]27[32[43[44[46]47[48]50]

sorted run sorted run

Internal (M = 8):

S S S3 s

| | | | | | (priority queue not shown)

@ Create f; sorted runs of length M. ©(3) block transfers
@ Merge the first d =~ % — 1 sorted runs using d-Way-Merge

© Keep merging the next runs to reduce # runs by factor of d
~~ one round of merging. ©(3) block transfers
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d-way mergesort

External (B = 2):

[1]2]3]4]5]6]8]7]910[t1[12[13[14]15]16]17[18]20[21]22[23]24]26]27]28]29]30[31]32]33[35]36]37]39]40[42[43[44]45[46]47[48]49]50] 52[53]54]

sorted run

[5] 8 J10[11]12]13]21]22]28[29]30[31[33[35]36]37[30[40]42[45]49[52[53[54] 1 [ 2[ 3] 4 [ 6 ] 7 | 9 [14]15]16]17]18]20]23[24]26[27[32[43]44]46]47[48]50]

sorted run sorted run
Internal (M =8
| | | | | | | | | | | | (priority queue not shown)
S3

S S2 S

@ Create §; sorted runs of length M. ©(4) block transfers
@ Merge the first d ~ % — 1 sorted runs using d-Way-Merge

© Keep merging the next runs to reduce # runs by factor of d
~~ one round of merging. ©(3) block transfers

© Keep doing rounds until only one run is left
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d-way mergesort

@ We have log,( ;) rounds of merging:

» ; runs after initialization

» ;/d runs after one round.
> +/d" runs after k rounds = k < logy().

Hunt, Veksler (CS-UW) CS240 — Module 11 Winter 2023 14 / 36



d-way mergesort

@ We have log,( ;) rounds of merging:

n

» ; runs after initialization
» ;/d runs after one round.
> +/d* runs after k rounds = k < logy(7).

e We have O(3) block-transfers per round.
~ M
= Total # block transfers is proportional to
logg(7) - & € O(logum/s(;) - B)
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d-way mergesort

@ We have log,( ;) rounds of merging:
» ; runs after initialization
» ;/d runs after one round.
> +/d* runs after k rounds = k < logy(7).

e We have O(3) block-transfers per round.
~ M
e d~ g —1L
= Total # block transfers is proportional to

logq(77) - B € O('°€M/B(ﬁ) " B)

One can prove lower bounds in the external memory model:

We require Q(log5(1;) ) block transfers in any comparison-
based sorting algorithm.
(The proof is beyond the scope of the course.)
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d-way mergesort

@ We have log,( ;) rounds of merging:
» ; runs after initialization
» ;/d runs after one round.
> +/d* runs after k rounds = k < logy(7).

e We have O(3) block-transfers per round.
~ M
e d~ g —1L
= Total # block transfers is proportional to

logq(77) - B € O('°€M/B(ﬁ) " B)

One can prove lower bounds in the external memory model:

We require Q(log5(1;) ) block transfers in any comparison-
based sorting algorithm.
(The proof is beyond the scope of the course.)

@ d-way mergesort is optimal (up to constant factors)!
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Outline

@ External Memory

@ External Dictionaries
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Dictionaries in external memory

Recall: Dictionaries store n KVPs and support search, insert and delete.

@ Recall: AVL-trees were optimal in time and space in RAM model
e O(log n) run-time = O(log n) block transfers per operation

@ But: Inserts happen at varying locations of the tree.
~> nearby nodes are unlikely to be on the same block
~ typically ©(log n) block transfers per operation

@ We would like to have fewer block transfers.

Better solution: design a tree-structure that guarantees that many nodes
on search-paths are within one block.
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Idealized structure

block of external memory

Idea: Store subtrees in one block of memory.

@ If block can hold subtree of size b—1, then block covers height log b

O(log

= Search-path hits =2 b") blocks = ©O(log, n) block-transfers

@ Block acts as one node of a multiway-tree (b—1 KVPs, b subtrees)
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Towards B-trees

Idea: Define multiway-tree

» One node stores many KVPs
> Always true: b—1 KVPs < b subtrees

To allow insert/delete, we permit varying numbers of KVPs in nodes

This gives much smaller height than for AVL-trees
= fewer block transfers

@ Study first one special case: 2-4-trees

» Also useful for dictionaries in internal memory
» May be faster than AVL-trees even in internal memory
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Outline

@ External Memory

@ 2-4 Trees
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2-4 Trees

Structural property: Every node is either
@ l-node: one KVP and two subtrees (possibly empty), or
@ 2-node: two KVPs and three subtrees (possibly empty), or
@ 3-node: three KV/Ps and four subtrees (possibly empty).

Order property: The keys at a node are between the keys in the subtrees.

@ With this, search is much like in binary search trees.

oy £ s Elfe ]

keys <kj k1< keys <kp ko< keys <ks k3 < keys

Another structural property: All empty subtrees are at the same level.
@ This is important to ensure small height.
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2-4 Tree example

ﬁ

@ Empty trees do not count towards height
> This tree has height 1
e Easy to show: Height is in O(log n), where n = # KVPs.

» Layer i has at least 2/ nodes for i = 0,..., h
» Each node has at least one KVP.
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2-4 Tree Operations

@ Search is similar to BST:

» Compare search-key to keys at node
» If not found, recurse in appropriate subtree

Example: search(15)

E
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2-4 Tree Operations

@ Search is similar to BST:

» Compare search-key to keys at node
» If not found, recurse in appropriate subtree

Example: search(15)

E
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2-4 Tree Operations

@ Search is similar to BST:

» Compare search-key to keys at node
» If not found, recurse in appropriate subtree

Example: search(15) not found

E
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2-4 Tree operations

24Tree::search(k,v + root, p + NIL)
k: key to search, v: node where we search, p: parent of v
if v represents empty subtree

return “not found, would be in p"”
Let (To, k1, ..., kq, Tq) be key-subtree list at v
if k> ki

i + maximal index such that k; < k

if ki =k

return KVP at k;

else 24 Tree::search(k, T;, v)

else 24 Tree::search(k, Ty, v)

©oNOORAEWN R
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Insertion in a 2-4 tree

Example: insert(10)
@ Do 24Tree::search and add key and empty subtree at leaf.

ﬁ
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Insertion in a 2-4 tree

Example: insert(10)
@ Do 24Tree::search and add key and empty subtree at leaf.
@ If the leaf had room then we are done.

ﬁ
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Insertion in a 2-4 tree

Example: insert(17)

@ Do 24Tree::search and add key and empty subtree at leaf.

If the leaf had room then we are done.

o
o Else overflow: More keys/subtrees than permitted.
]

Resolve overflow by node splitting.

|5|9|12|

11

[13[14]16]17]

L
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Insertion in a 2-4 tree

Example: insert(17)
@ Do 24Tree::search and add key and empty subtree at leaf.
@ If the leaf had room then we are done.
o Else overflow: More keys/subtrees than permitted.
@ Resolve overflow by node splitting.

|5|9|12|16|

)54 [6]8] [10]11]  [13[14]
0 [ 0 0 J \0) Q/ \(0 0 0
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Insertion in a 2-4 tree

Example: insert(17)
@ Do 24Tree::search and add key and empty subtree at leaf.
@ If the leaf had room then we are done.
o Else overflow: More keys/subtrees than permitted.
@ Resolve overflow by node splitting.

5(9112]16

)54 [6]8] [10]11]  [13[14]
0 [ 0 0 J \0) Q/ \(0 0 0
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Insertion in a 2-4 tree

Example: insert(17)
@ Do 24Tree::search and add key and empty subtree at leaf.
@ If the leaf had room then we are done.
o Else overflow: More keys/subtrees than permitted.
@ Resolve overflow by node splitting.

11| (13

ﬁ {o W
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2-4 Tree operations

24 Tree::insert( k)

v 24Tree::search(k) // leaf where k should be

Add k and an empty subtree in key-subtree-list of v

while v has 4 keys (overflow ~~ node split)
Let (To, k1, ..., ke, T4) be key-subtree list at v
if (v has no parent) create a parent of v without KVPs
p + parent of v
v/ < new node with keys k1, ko and subtrees Ty, T1, T>
v"" < new node with key k4 and subtrees T3, T,
Replace (v) by (v, k3, v"’) in key-subtree-list of p

10. V< op

©oNO R wN -

i
MEEn

To/ Ti Tr T3 Ty To T1 \7_2 3 ?_4
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Towards 2-4 Tree

Deletion

@ For deletion, we symmetrically will have to handle underflow
(too few keys/subtrees)

@ Crucial ingredient for this: immediate sibling

E

0

S

59

12

16

}—ﬂ 13[14

@ Observe: Any node except the root has an immediate sibling.

Hunt, Veksler (CS-UW)
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2-4 Tree Deletion
Example: delete(43)

@ 24Tree::search, then trade with successor if KVP is not at a leaf.
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2-4 Tree Deletion
Example: delete(43)

@ 24Tree::search, then trade with successor if KVP is not at a leaf.
o If underflow:
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2-4 Tree Deletion
Example: delete(43)

@ 24Tree::search, then trade with successor if KVP is not at a leaf.
o If underflow:
» If immediate sibling has extras, rotate/transfer

o] [19] [z
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2-4 Tree Deletion
Example: delete(19)

@ 24Tree::search, then trade with successor if KVP is not at a leaf.
o If underflow:
» If immediate sibling has extras, rotate/transfer

o [ & = EE©
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2-4 Tree Deletion
Example: delete(19)

@ 24Tree::search, then trade with successor if KVP is not at a leaf.
o If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)
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2-4 Tree Deletion
Example: delete(19)

@ 24Tree::search, then trade with successor if KVP is not at a leaf.
o If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)
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2-4 Tree Deletion
Example: delete(42)

@ 24Tree::search, then trade with successor if KVP is not at a leaf.
o If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)
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2-4 Tree Deletion
Example: delete(42)

@ 24Tree::search, then trade with successor if KVP is not at a leaf.
o If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

2
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2-4 Tree Deletion
Example: delete(42)

@ 24Tree::search, then trade with successor if KVP is not at a leaf.
o If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

48156

] [ [6
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2-4 Tree Deletion

Example: delete(42)
@ 24Tree::search, then trade with successor if KVP is not at a leaf.

o If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

Bl [67
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2-4 Tree Deletion

Example: delete(42)
@ 24Tree::search, then trade with successor if KVP is not at a leaf.

o If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

Bl [67
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Deletion from a 2-4 Tree

1.

© NGO RWN

=
N =

._.
o

P e
ok w

24 Tree::delete(k)

v  24Tree::search(k) // node containing k
if v is not leaf
swap k with its successor k' and v with leaf containing k’
delete k and one empty subtree in v
while v has 0 keys (underflow)
if parent p of v is NIL, delete v and break
if v has immediate sibling u with 2 or more keys (transfer/rotate)
transfer the key of u that is nearest to v to p
transfer the key of p between v and v to v
transfer the subtree of u that is nearest to v to v
break
else (merge & repeat)
u < immediate sibling of v
transfer the key of p between v and v to u
transfer the subtree of v to u
delete node v and set v < p
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2-4 Tree summary

@ A 2-4 tree has height O(log n)
» In internal memory, all operations have run-time O(log n).
» This is no better than AVL-trees in theory.
(Though 2-4-trees are faster than AVL-trees in practice, especially when converted

to binary search trees called red-black trees. No details.)

@ A 2-4 tree has height Q(log n)

> Level i contains at most 4’ nodes
» Each node contains at most 3 KVPs

@ So not significantly better than AVL-trees w.r.t. block transfers.

@ But we can generalize the concept to decrease the height.
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Outline

@ External Memory

@ a-b-Trees
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a-b-Trees
A 2-4 tree is an a-b-tree for a =2 and b = 4.

An a-b-tree satisfies:

@ Each node has at least a subtrees, unless it is the root.
The root has at least 2 subtrees.

@ Each node has at most b subtrees.
@ A node has d subtrees < it stores d—1 KVPs
@ Empty subtrees are at the same level.

@ The keys in the node are between the keys in the corresponding
subtrees.

Requirement: a < [b/2] = [(b+1)/2].

search, insert, delete then work just like for 2-4 trees, after re-defining
underflow/overflow to consider the above constraints.
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a-b-tree example

A 3-6-tree
|14|20
10|12 16|18 22|24 28|30 34136 40142 46148| |52]|54|56|58|60| |64]|66
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a-b-tree insertion

insert(55):
[14]20
10[12] [16]18] [22]24] [28]30] [34[36] [40[42] [46]4c] [E2]54]55]56]58]60] [64]66
@ Overflow now means b keys (and b + 1 subtrees)
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a-b-tree insertion

insert(55):
[14]20]26[32 44]50[56]62]
10[12] [16]18] [22[24] [28[30] [34]36] [40[42] [46]4c] [B2]B4]55] [Be]e0] [64]66

@ Overflow now means b keys (and b + 1 subtrees)
e Node split = new nodes have > |(b—1)/2] keys
@ Since we required a < |(b+1)/2], this is > a—1 keys as required.
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Height of an a-b-tree

Recall: n = numbers of KVPs (not the number of nodes)
What is smallest possible number of KVPs in an a-b-tree of height-h?

Level Nodes
0 >1
1 > 2
2 > 2a
3 > 232
h > 2ah—1
# nodes > 1 + Zf’;ol 2a'
root\EIIJKVP —

others: >a—1 KVPs

n=#KVPs > 1+4(a—1)Y0¢2a=1+2(a—1)2 =1+2a"

Therefore the height of an a-b-tree is O(log,(n)) = O(log n/ log a).
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a-b-trees as implementations of dictionaries

Analysis (if entire a-b-tree is stored in internal memory):
@ search, insert, and delete each requires visiting ©(height) nodes
@ Height is O(log n/ log a).
@ Recall: a < [b/2] required for insert and delete
= choose a = [b/2] to minimize the height.

e Work at node can be done in O(log b) time.

_ log n B logh |
Total cost: O(Ioga (log b)) = O(log n logh 1 1) = O(logn)

This is still no better than AVL-trees.

The main motivation for a-b-trees is external memory .
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Outline

@ External Memory

@ B-Trees
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B-trees

A B-tree is an a-b-tree tailored to the external memory model.
e Every node is one block of memory (of size B).

@ b is chosen maximally such that a node with b—1 KVPs (hence b—1
value-references and b subtree-references) fits into a block.
b is called the order of the B-tree. Typically b € ©(B).

@ ais set to be [b/2] as before.

/1321\/[\[581\4'44\&1

[p[38]v]e

o]
o]

136]

(‘v' indicates the value or value-reference associated with the key next to it)
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B-tree in external memory

Close-up on one node in one block:

external memory

[mmmmmmmmummu!‘mmmmmummmmmmmmmummumm..]

A transfer EN
if Ty
needed

internal memory

parent To 7 T, T3
o[efla[n]efie]ve]e|k|vle]r]x]e[r]"]-]

unused (node not full)

AL e

In this example: 17 computer-words fit into one block, so (assuming keys
and values fit into computer-words) the B-tree can have order 6.
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B-tree analysis

@ search, insert, and delete each requires visiting ©(height) nodes

@ Work within a node is done in internal memory = no block-transfer.
@ The height is ©(log, n) = ©(logg n) (presuming a = [b/2] € ©(B))

So all operations require ©(logg n) block transfers.
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B-tree summary

e All operations require ©(logg n) block transfers.
This is asymptotically optimal.

@ In practice, height is a small constant.
» Say n=2% and B=2'. So roughly b = 214 5 =213
» B-tree of height 4 would have > 1 + 2a* > 250 KVPs.
» So height is 3.

There are some variations that are even better in practice (no
details).

B-trees are hugely important for storing data bases (~ cs448)
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