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Different levels of memory
 Current architectures

 registers:  super fast, very small  

 cache L1, L2:  very fast, less small  

 main memory: fast, large  

 disk or cloud: slow,  very large

 How to adapt algorithms to take memory hierarchy into consideration?

 desirable to minimize transfer between slow/fast memory

 To simplify, we focus on two levels of hierarchy

 main (internal) memory and disk or cloud (external) memory

 main memory: fast, large  

 disk or cloud: slow,  very large

 accessing a single location in external memory automatically loads a whole 
block (or “page”)

 one block access can take as much time as executing 100,000 CPU 
instructions

 need to care about the number of block accesses



Adding External-Memory Model (EMM)

CPU

slow access
only in blocks of 𝐵 cells

 New cost of computation: number of blocks transferred (or ‘probes’, ‘disk transfers’, ‘page 
loads’) between internal and external memory 

 We will revisit ADTs/problems with the objective of  minimizing block transfers

internal memory – size M

. . .

external memory – size unbounded

fast random access

𝐵 is typically from 1024 to 8192

 Algorithm 1

1,000 CPU instructions + 1,000 block transfers

 Algorithm 2

10,000 CPU instructions + 10 block transfers

dominating 
factors

= 1,000+1,000⋅100,000 = 103 + 108

= 10,000+10⋅100,000 = 104 + 106

Suppose time for one block 
transfer = time for 100,000 CPU 
instructions
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Stream Based Algorithms in Internal Memory
 We studied some algorithms that handle input/output with streams

 can access only the top item in input stream, can append only to tail of the output stream

* * * * *input output
top tail

 Repeat
1. take item off top of the input

2. process item

3. put the result of processing at the tail of output

CPU
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Stream Based Algorithms in Internal Memory
 We studied some algorithms that handle input/output with streams

 can access only the top item in input stream, can append only to tail of the output stream

*input output *****

 Repeat
1. take item off top of the input

2. process item

3. put the result of processing at the tail of output

CPU
process *



Stream Based Algorithms in External Memory

* * * * * * * * * *

External Memory

input outputtop tail

Internal Memory

CPU

input block output block

 Data in external memory has to be placed in internal memory before it can be processed

 Idea: perform the same algorithm as before, but in “block-wise” manner
 have one block for input, one block for output in internal memory

block

 transfer a block (size 𝐵) to internal memory, process it as before, store result in output block

 when output stream is of size 𝐵 (full block), transfer it to external memory

 when current block is in internal memory is fully processed, transfer next unprocessed block
from external memory
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Stream Based Algorithms in External Memory
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Stream Based Algorithms in External Memory

* * * * * * * * * * * * * * *

External Memory

input output

Internal Memory

CPU

input block output block

first block

*

input block is empty, 
transfer new input block 
from external memory
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Stream Based Algorithms in External Memory

* * * * * * * * * * * * * * * * * * * *

External Memory

input output

Internal Memory

CPU

input block output block

next block

*

 Running time (recall that we only count the block transfers now)

 input stream:
𝑛

𝐵
block transfers to read input of size 𝑛

 output stream:
𝑠

𝐵
block transfers to write output of size 𝑠

 Running time is automatically as efficient as possible for external memory

 any algorithm needs at least
𝑛

𝐵
block transfers to read input of size 𝑛 and

𝑠

𝐵
block

transfers to write output of size 𝑠



Stream Based Algorithms in External Memory

 Methods below use stream input/output model, therefore need Θ
𝑛

𝐵
block

transfers, assuming output size is 𝑂(𝑛)
 Pattern matching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore

 assuming pattern 𝑃 fits into internal memory

 Text compression: Huffman, run-length encoding, Lempel-Ziv-Welch
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Sorting in external memory
 Sort array 𝐴 of 𝑛 numbers

 𝑛 is huge so that 𝐴 is stored in blocks in external memory

 Heapsort was optimal in time and space in RAM model

 poor memory locality: accesses indices of 𝐴 that are far apart

 Mergesort adapts well to array stored in external memory
 based on merging already sorted parts of the array

 access consecutive locations of 𝐴, ideal for reading in blocks

block block block block block block block

block block block block block block block

 key idea: merge can be done with streams

 typically one block transfer per array access

 access 2 blocks, but need only 2 elements in these blocks

 all other data read in these 2 blocks is not used

 does not adapt well to data stored in external memory, Θ 𝑛 log𝑛 block transfers 



Recall Mergesort
lo
g
2
𝑛



Mergesort: non-recusive Version
 Proceed bottom-up with while loops, rather than top-down with recursion

 Several rounds of merging adjacent pairs of sorted runs (run = subarray)

 in round 𝑖, merge sorted runs of size 2𝑖

 Graphical notation

merge merge merge merge

size 21

2 11 34 67 1 8 12 31 3 15 18 32 4 9 13 16

merge merge

size 22

34 11 2 67 8 12 31 1 3 15 18 32 9 16 4 13

merge

size 20

merge merge merge merge mergemerge merge

11 34 2 67 8 12 1 31 3 15 18 32 9 16 4 13

1 2 3 8 11 12 31 34 3 4 9 13 15 16 18 32

merge

sorted array1 2 3 3 4 8 9 11 12 13 15 16 18 31 32 34

size 23

sorted run

lo
g
2
𝑛



Merging with Streams in External Memory
Merge(𝑆1, 𝑆2, 𝑆)

𝑆1, 𝑆2 are input streams in sorted order, 𝑆 is output stream

while 𝑆1 or 𝑆2 is not empty do

if 𝑆1 is empty 𝑆.append(𝑆2.𝑝𝑜𝑝( ))

else if 𝑆2 is empty 𝑆.append(𝑆1.𝑝𝑜𝑝( ))

else if 𝑆1.𝑡𝑜𝑝 < 𝑆2.𝑡𝑜𝑝( ) 𝑆.append(𝑆1.𝑝𝑜𝑝( ))

else 𝑆.append(𝑆2.𝑝𝑜𝑝( ))

Internal Memoryinput blocks for 
𝑆1 and 𝑆2

output block 
for 𝑆

transfer a 
block in when 
either 𝑆1or 𝑆2

becomes 
empty

transfer block 
out when 𝑆

becomes full

𝐵 = 4



Merging with Streams in External Memory

Internal Memoryinput blocks for 
𝑆1 and 𝑆2

output block 
for 𝑆

transfer a 
block in when 
either 𝑆1or 𝑆2

becomes 
empty

transfer block 
out when 𝑆

becomes full

𝐵 = 4

67 34 11 2

31 12 8 1



Merging with Streams in External Memory

Internal Memoryinput blocks for 
𝑆1 and 𝑆2

output block 
for 𝑆

transfer a 
block in when 
either 𝑆1or 𝑆2

becomes 
empty

transfer block 
out when 𝑆

becomes full

𝐵 = 4

167 34 11 2

31 12 8



Merging with Streams in External Memory

Internal Memoryinput blocks for 
𝑆1 and 𝑆2

output block 
for 𝑆

transfer a 
block in when 
either 𝑆1or 𝑆2

becomes 
empty

transfer block 
out when 𝑆

becomes full

𝐵 = 4

2 167 34 11

31 12 8



Merging with Streams in External Memory

Internal Memoryinput blocks for 
𝑆1 and 𝑆2

output block 
for 𝑆

transfer a 
block in when 
either 𝑆1or 𝑆2

becomes 
empty

transfer block 
out when 𝑆

becomes full

𝐵 = 4

8 2 167 34 11

31 12



Merging with Streams in External Memory

Internal Memoryinput blocks for 
𝑆1 and 𝑆2

output block 
for 𝑆

transfer a 
block in when 
either 𝑆1or 𝑆2

becomes 
empty

transfer block 
out when 𝑆

becomes full

𝐵 = 4

11 8 2 167 34

31 12

output block is full, 
transfer to external 

memory



Merging with Streams in External Memory

Internal Memoryinput blocks for 
𝑆1 and 𝑆2

output block 
for 𝑆

transfer a 
block in when 
either 𝑆1or 𝑆2

becomes 
empty

transfer block 
out when 𝑆

becomes full

𝐵 = 4

67 34

31 12



Merging with Streams in External Memory

Internal Memoryinput blocks for 
𝑆1 and 𝑆2

output block 
for 𝑆

transfer a 
block in when 
either 𝑆1or 𝑆2

becomes 
empty

transfer block 
out when 𝑆

becomes full

𝐵 = 4

1267 34

31



Merging with Streams in External Memory

Internal Memoryinput blocks for 
𝑆1 and 𝑆2

output block 
for 𝑆

transfer a 
block in when 
either 𝑆1or 𝑆2

becomes 
empty

transfer block 
out when 𝑆

becomes full

𝐵 = 4

31 1267 34

input block for 𝑆2 is 
empty, transfer next block 

for 𝑆2 from external 
memory



Merging with Streams in External Memory

Internal Memoryinput blocks for 
𝑆1 and 𝑆2

output block 
for 𝑆

transfer a 
block in when 
either 𝑆1or 𝑆2

becomes 
empty

transfer block 
out when 𝑆

becomes full

𝐵 = 4

31 1267 34

81 80 70 33



Merging with Streams in External Memory

Internal Memoryinput blocks for 
𝑆1 and 𝑆2

output block 
for 𝑆

transfer a 
block in when 
either 𝑆1or 𝑆2

becomes 
empty

transfer block 
out when 𝑆

becomes full

𝐵 = 4

33 31 1267 34

81 80 70



Merging with Streams in External Memory

Internal Memoryinput blocks for 
𝑆1 and 𝑆2

output block 
for 𝑆

transfer a 
block in when 
either 𝑆1or 𝑆2

becomes 
empty

transfer block 
out when 𝑆

becomes full

𝐵 = 4

34 33 31 1267

81 80 70

output block is full, 
transfer to external 

memory



Merging with Streams in External Memory

Internal Memoryinput blocks for 
𝑆1 and 𝑆2

output block 
for 𝑆

transfer a 
block in when 
either 𝑆1or 𝑆2

becomes 
empty

transfer block 
out when 𝑆

becomes full

𝐵 = 4

67

81 80 70



Merging with Streams in External Memory

Internal Memoryinput blocks for 
𝑆1 and 𝑆2

output block 
for 𝑆

transfer a 
block in when 
either 𝑆1or 𝑆2

becomes 
empty

transfer block 
out when 𝑆

becomes full

𝐵 = 4

67

81 80 70

input block for 𝑆1 is 
empty, transfer next block 

for 𝑆1 from external 
memory



Merging with Streams in External Memory

Internal Memoryinput blocks for 
𝑆1 and 𝑆2

output block 
for 𝑆

transfer a 
block in when 
either 𝑆1or 𝑆2

becomes 
empty

transfer block 
out when 𝑆

becomes full

𝐵 = 4

6799 76 72 71

81 80 70

 Merge uses streams 𝑆1, 𝑆2, 𝑆
 each block in the stream is transferred exactly once

 Merge takes
𝑛

𝐵
block transfers for input streams and

𝑛

𝐵
for output stream, total

2𝑛

𝐵

 Recall that MergeSort uses log2 𝑛 rounds of merging

 MergeSort run-time to sort is
2𝑛

𝐵
⋅ log2 𝑛 block transfers

 not bad but we can do better

 idea: reduce the number of rounds

 typically 𝑀 ≫ 3𝐵, so can fit many blocks in the main memory

 merge more than 2 sequences at a time!



𝑑-way Mergesort
 Merge 𝑑 sorted runs at one time

 𝑑 = 2 gives standard mergesort

 Example:  𝑑 = 4

𝑑-way merge

size 41

34 11 2 67 8 12 31 1 3 15 18 32 9 16 4 13 size 40

𝑑-way merge 𝑑-way merge𝑑-way merge

2 11 34 67 1 8 12 31 3 15 18 32 4 9 13 16

sorted array

𝑑-way merge

1 2 3 3 4 8 9 11 12 13 15 16 18 31 32 34

 log𝑑 𝑛 =
log2 𝑛

log2 𝑑
rounds

 the larger is 𝑑 the less rounds

 each round still takes 
2𝑛

𝐵
of block transfers

lo
g
𝑑
𝑛



𝑑-way Mergesort

 Merge 𝑑 sorted runs at once, and it still takes
2𝑛

𝐵
of block transfers

 Let 𝑀 be the size of the internal memory

 Choose 𝑑 so that 𝑑 + 1 blocks fit into internal memory

 𝑑 + 1 ≈
𝑀

𝐵

Internal Memoryinput blocks for 
𝑆1 𝑆2 𝑆3 𝑆4

output block 
for 𝑆transfer a block 

in when either 
𝑆1, 𝑆2, 𝑆3 , 𝑆4

becomes 
empty

transfer block 
out when 𝑆

becomes full

2 167 34 11

14 10

41 22

31 12 8



𝑑-way Merge
 𝑑 = 3

2 11 34 8 9 12 1 11 31

 𝑑 = 5

2 11 34 8 9 12 1 11 31 15 18 32 9 12 13

 𝑑 = 16

34 11 2 67 8 12 31 1 3 15 18 32 9 16 4 13

 Need efficient data structure to find the minimum  among 𝑑 current tops

 although it does not effect efficiency in terms of block transfers



𝑑-way Merge with Min-Heap
 Use min heap to find the smallest element among  of 𝑑 current tops

 (key,value) = (element, sorted run)

 𝑑 = 4
2 11 34 67 1 8 12 31 3 15 18 32 4 9 13 16

1,1

2,0 3,2

4,3

1) insert(2,0), insert(1,1), 
insert(3,2), insert(4,3)

merged output



𝑑-way Merge with Min-Heap

2 11 34 67 1 8 12 31 3 15 18 32 4 9 13 16

1,1

2,0 3,2

4,3

2) deleteMin() = (1,1)

1

2,0

4,3 3,2

1) insert(2,0), insert(1,1), 
insert(3,2), insert(4,3)

merged output



𝑑-way Merge with Min-Heap

2 11 34 67 1 8 12 31 3 15 18 32 4 9 13 16

1

3) insert(8,1)

2,0

4,3 3,2

8,1

 Heap must have current fronts from all sorted runs

 unless some sorted run ends

merged output

1,1

2,0 3,2

4,3

1) insert(2,0), insert(1,1), 
insert(3,2), insert(4,3)

2) deleteMin() = (1,1)

2,0

4,3 3,2



𝑑-way Merge with Min-Heap

2 11 34 67 1 8 12 31 3 15 18 32 4 9 13 16

1

4) deleteMin() = (2,0)

3,2

4,3 8,1

2merged output

3) insert(8,1)

2,0

4,3 3,2

8,1

1,1

2,0 3,2

4,3

1) insert(2,0), insert(1,1), 
insert(3,2), insert(4,3)

2) deleteMin() = (1,1)

2,0

4,3 3,2



𝑑-way Merge with Min-Heap

2 11 34 67 1 8 12 31 3 15 18 32 4 9 13 16

1 2

5) insert(11,0)

3,2

4,3 8,1

11,0

4) deleteMin() = (2,0)

3,2

4,3 8,1

3) insert(8,1)

2,0

4,3 3,2

8,1

1,1

2,0 3,2

4,3

1) insert(2,0), insert(1,1), 
insert(3,2), insert(4,3)

2) deleteMin() = (1,1)

2,0

4,3 3,2

merged output



𝑑-way Merge with Min-Heap

2 11 34 67 1 8 12 31 3 15 18 32 4 9 13 16

1 2

6) deleteMin() = (3,2)

4,3

11,0 8,1

3merged output

5) insert(11,0)

3,2

4,3 8,1

11,0

4) deleteMin() = (2,0)

3,2

4,3 8,1

3) insert(8,1)

2,0

4,3 3,2

8,1

1,1

2,0 3,2

4,3

1) insert(2,0), insert(1,1), 
insert(3,2), insert(4,3)

2) deleteMin() = (1,1)

2,0

4,3 3,2



𝑑-way Merge with Min Heap Pseudo Code
d-Way-Merge(𝑆1, . . . , 𝑆𝑑 , 𝑆)
𝑆1, . . . , 𝑆𝑑 are input sorted runs, each is a stream, 𝑆 is output stream

𝑃 ← empty min-priority queue

// 𝑃 always holds current top elements of 𝑆1, . . . , 𝑆𝑑

for 𝑖 ← 1 to 𝑑 do

𝑃.insert( 𝑆𝑖.𝑡𝑜𝑝 , 𝑖)

while 𝑃 is not empty do

(𝑥, 𝑖) ← 𝑃.deleteMin() // removes current top of 𝑆𝑖 from 𝑃

𝑆.append(𝑥)

if 𝑆𝑖 is not empty do

// current top of 𝑆𝑖 is not represented in 𝑃, add it

𝑃.insert(𝑆𝑖.𝑡𝑜𝑝( ), 𝑖)

 Running time of operations in internal memory

 priority queue 𝑃 has size at most 𝑑 at all times

 while loop runs for 𝑚 iterations, where 𝑚 = |𝑆1| + ⋯+ |𝑆𝑑|

 at each iteration

 one deleteMin() on heap of size 𝑑, time is Θ(log2 𝑑)

 one insert() on heap of size 𝑑, time is Θ(log2 𝑑)

 Total time is Θ(𝑚 log2 𝑑)

Θ(𝑑 log2 𝑑)

Θ(𝑚 log2 𝑑)



𝑑-way Merge with Min Heap Pseudo Code
d-Way-Merge(𝑆1, . . . , 𝑆𝑑 , 𝑆)
𝑆1, . . . , 𝑆𝑑 are input sorted runs, each is a stream, 𝑆 is output stream

𝑃 ← empty min-priority queue

// 𝑃 always holds current top elements of 𝑆1, . . . , 𝑆𝑑

for 𝑖 ← 1 to 𝑑 do

𝑃.insert( 𝑆𝑖.𝑡𝑜𝑝( ), , 𝑖)

while 𝑃 is not empty do

(𝑥, 𝑖) ← 𝑃.deleteMin() // removes current top of 𝑆𝑖 from 𝑃

𝑆.append(𝑥)

if 𝑆𝑖 is not empty do

// current top of 𝑆𝑖 is not represented in 𝑃, add it

𝑃.insert(𝑆𝑖.𝑡𝑜𝑝( ), 𝑖)

 Running time of operations in internal memory

 priority queue 𝑃 has size at most 𝑑 at all times

 while loop runs for 𝑚 iterations, where 𝑚 = |𝑆1| + ⋯+ |𝑆𝑑|

 at each iteration

 one deleteMin() on heap of size 𝑑, time is Θ(log2 𝑑)

 one insert() on heap of size 𝑑, time is Θ(log2 𝑑)

 Total time is Θ(𝑚 log2 𝑑)

Θ(𝑑 log2 𝑑)

Θ(𝑚 log2 𝑑)

 Number of block transfers is 
2𝑚

𝐵
, assuming 𝑑 + 1 blocks and 𝑃 fit into main memory



One Round of 𝑑-way Mergesort Running time
 In internal memory, 𝑑-way merge is Θ(𝑚 log2 𝑑)

 𝑚 is the total number of elements in 𝑑 sorted runs 

 We need to 𝑑-way merge multiple number of times for one round of 𝑑-way Mergesort

34 11 2 67 8 12 31 1 3 15 18 32 9 16 4 13

𝑑-way merge 𝑑-way merge𝑑-way merge 𝑑-way merge

 let 𝑚1 be the number of elements in the first set of 𝑑 sorted runs we merge

 time to merge is Θ(𝑚1 log2 𝑑)

 The number of block transfers is  
2𝑛

𝐵

𝑚1 elements 𝑚2 elements 𝑚3 elements 𝑚4 elements

 let 𝑚2 be the number of elements in the second set of  𝑑 sorted runs we merge

 time to merge is Θ(𝑚2 log2 𝑑)

 ……….

 let 𝑚𝑘 be the number of elements in the last set of  𝑑 sorted runs we merge

 time to merge is Θ(𝑚𝑘 log2 𝑑)

 Total time to merge is 
Θ 𝑚1 log2 𝑑 +𝑚2 log2 𝑑 +…+𝑚𝑘 log2 𝑑 = Θ((𝑚1+𝑚2+⋯+𝑚𝑘 )log2 𝑑)

 where 𝑛 is the size of the whole sequence 𝑛



𝑑-way Mergesort Complexity In Internal Memory

 log𝑑 𝑛 rounds

 Running time for one round is  Θ(𝑛 log2 𝑑)

 Total time  Θ(log𝑑 𝑛 ⋅ 𝑛 log2 𝑑) = Θ
log2 𝑛

log2 𝑑
⋅ 𝑛 log2 𝑑 = Θ 𝑛 log2 𝑛

 In internal memory, 𝑑-way merge sort has the same running time theoretically

 in practice , 𝑑-way merge is slower due to the overhead of maintaining a heap



𝑑-way Mergesort Complexity In External Memory

 Only block transfers count, each round is  Θ
𝑛

𝐵
block transfers, no matter what 𝑑 is

 assuming 𝑑 is such that 𝑑 + 1 blocks plus priority queue fit into internal memory

 log𝑑 𝑛 rounds, time for each round is Θ
𝑛

𝐵
block transfers

 Total time  Θ
𝑛

𝐵
⋅ log𝑑 𝑛

 for large 𝑑, better than Θ
𝑛

𝐵
⋅ log2 𝑛 of standard MergeSort



𝑑-way Mergesort Complexity In External Memory
 Further improvements

 reduce  number of rounds by starting immediately with runs of length 𝑀

 Suppose 𝑀 = 256 and 𝑑 = 4
 previously, iterate with sorted runs of length

 1, 4, 16, 64, 256, 1024, . . .

 Now, first sort subarrays of size 256 by bringing them into main memory

 cost is equal to 1 round of merging

 Now, iterate with sorted runs of length

 256, 1024,…

 saves 3 iterations



𝑑-Way merge in  External Memory
 External (𝐵 = 2)

Internal memory 𝑀 = 8

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53



𝑑-Way Mergesort in External Memory: Initialization

Internal (M = 8):

 External (𝐵 = 2)

39 5 28 22 10 33 29 37 8 30 54 40 31 52 21 45 35 11 42 53 13 12 49 36 4 14 27 9 44 3 32 15

39 5 28 22 10 33 29 37

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm



𝑑-Way Mergesort in External Memory: Initialization

Internal (M = 8):

 External (𝐵 = 2)

39 5 28 22 10 33 29 37 8 30 54 40 31 52 21 45 35 11 42 53 13 12 49 36 4 14 27 9 44 3 32 15

5 10 22 28 29 33 37 39

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm



𝑑-Way Mergesort in External Memory: Initialization

Internal (M = 8):

 External (𝐵 = 2)

5 10 22 28 29 33 37 39 8 30 54 40 31 52 21 45 35 11 42 53 13 12 49 36 4 14 27 9 44 3 32 15

5 10 22 28 29 33 37 39

sorted run

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm



𝑑-Way Mergesort in External Memory: Initialization

Internal (M = 8):

 External (𝐵 = 2)

5 10 22 28 29 33 37 39 8 30 54 40 31 52 21 45 35 11 42 53 13 12 49 36 4 14 27 9 44 3 32 15

8 30 54 40 31 52 21 45

sorted run

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm



𝑑-Way Mergesort in External Memory: Initialization

Internal (M = 8):

 External (𝐵 = 2)

8 21 30 31 40 45 52 54

sorted run

5 10 22 28 29 33 37 39 8 30 54 40 31 52 21 45 35 11 42 53 13 12 49 36 4 14 27 9 44 3 32 15

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm



𝑑-Way Mergesort in External Memory: Initialization

Internal (M = 8):

 External (𝐵 = 2)

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 35 11 42 53 13 12 49 36 4 14 27 9 44 3 32 15

8 21 30 31 40 45 52 54

sorted run sorted run

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm



𝑑-Way Mergesort in External Memory: Initialization

Internal (M = 8):

 External (𝐵 = 2)

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53 3 4 9 14 15 27 32 44

sorted run sorted run sorted run sorted run

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm

.   Takes is Θ
𝑛

𝐵
block transfers



𝑑-Way Mergesort in External Memory

Internal (M = 8):

 External (𝐵 = 2)

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53 3 4 9 14 15 27 32 44

sorted run sorted run sorted run sorted run

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm

.   Takes is Θ
𝑛

𝐵
block transfers

2. Merge first 𝑑 ≈
𝑀

𝐵
− 1 sorted runs using 𝑑-way-Merge

5 10 8 21 11 12

𝑆1 𝑆2 𝑆3 𝑆

(𝑑 = 3, priority queue not shown)



𝑑-Way Mergesort in External Memory

Internal (M = 8):

 External (𝐵 = 2)

sorted run sorted run sorted run sorted run

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm

.   Takes is Θ
𝑛

𝐵
block transfers

2. Merge first 𝑑 ≈
𝑀

𝐵
− 1 sorted runs using 𝑑-way-Merge

10 8 21 11 12 5

𝑆1 𝑆2 𝑆3 𝑆

(𝑑 = 3, priority queue not shown)

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53 3 4 9 14 15 27 32 44



𝑑-Way Mergesort in External Memory

Internal (M = 8):

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm

.   Takes is Θ
𝑛

𝐵
block transfers

2. Merge first 𝑑 ≈
𝑀

𝐵
− 1 sorted runs using 𝑑-way-Merge

10 21 11 12 5 8

𝑆1 𝑆2 𝑆3 𝑆

(𝑑 = 3, priority queue not shown)

 External (𝐵 = 2)

sorted run sorted run sorted run sorted run

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53 3 4 9 14 15 27 32 44



𝑑-Way Mergesort in External Memory

Internal (M = 8):

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm

.   Takes is Θ
𝑛

𝐵
block transfers

2. Merge first 𝑑 ≈
𝑀

𝐵
− 1 sorted runs using 𝑑-way-Merge

10 21 11 12

𝑆1 𝑆2 𝑆3 𝑆

(𝑑 = 3, priority queue not shown)

 External (𝐵 = 2)

sorted run sorted run sorted run sorted run

5 8

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53 3 4 9 14 15 27 32 44



𝑑-Way Mergesort in External Memory

Internal (M = 8):

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm

.   Takes is Θ
𝑛

𝐵
block transfers

2. Merge first 𝑑 ≈
𝑀

𝐵
− 1 sorted runs using 𝑑-way-Merge

21 11 12 10

𝑆1 𝑆2 𝑆3 𝑆

(𝑑 = 3, priority queue not shown)

 External (𝐵 = 2)

sorted run sorted run sorted run sorted run

5 8

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53 3 4 9 14 15 27 32 44



𝑑-Way Mergesort in External Memory

Internal (M = 8):

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm

.   Takes is Θ
𝑛

𝐵
block transfers

2. Merge first 𝑑 ≈
𝑀

𝐵
− 1 sorted runs using 𝑑-way-Merge

22 28 21 11 12 10

𝑆1 𝑆2 𝑆3 𝑆

(𝑑 = 3, priority queue not shown)

 External (𝐵 = 2)

sorted run sorted run sorted run sorted run

5 8

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53 3 4 9 14 15 27 32 44



𝑑-Way Mergesort in External Memory

Internal (M = 8):

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm

.   Takes is Θ
𝑛

𝐵
block transfers

2. Merge first 𝑑 ≈
𝑀

𝐵
− 1 sorted runs using 𝑑-way-Merge

22 28 21 12 10 11

𝑆1 𝑆2 𝑆3 𝑆

(𝑑 = 3, priority queue not shown)

 External (𝐵 = 2)

sorted run sorted run sorted run sorted run

5 8

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53 3 4 9 14 15 27 32 44



𝑑-Way Mergesort in External Memory

Internal (M = 8):

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm

.   Takes is Θ
𝑛

𝐵
block transfers

2. Merge first 𝑑 ≈
𝑀

𝐵
− 1 sorted runs using 𝑑-way-Merge

22 28 21 12

𝑆1 𝑆2 𝑆3 𝑆

(𝑑 = 3, priority queue not shown)

 External (𝐵 = 2)

sorted run sorted run sorted run sorted run

5 8 10 11

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53 3 4 9 14 15 27 32 44



𝑑-Way Mergesort in External Memory

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm

.   Takes is Θ
𝑛

𝐵
block transfers

2. Merge first 𝑑 ≈
𝑀

𝐵
− 1 sorted runs using 𝑑-way-Merge

𝑆1 𝑆2 𝑆3 𝑆

(𝑑 = 3, priority queue not shown)

 External (𝐵 = 2)

sorted run sorted run sorted run sorted run

5 8 10 11 12 13 21 22 28 29 30 31 33 35 36 37 39 40 42 45 49 52 53 54

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53 3 4 9 14 15 27 32 44

sorted run



𝑑-Way Mergesort in External Memory

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm

.   Takes is Θ
𝑛

𝐵
block transfers

2. Merge first 𝑑 ≈
𝑀

𝐵
− 1 sorted runs using 𝑑-way-Merge

3. Keep merging the next runs to complete one round. 

 after one round of merging, number of sorted runs reduced by a factor of 𝑑

𝑆1 𝑆2 𝑆3 𝑆

(𝑑 = 3, priority queue not shown)

 External (𝐵 = 2)

sorted run sorted run sorted run sorted run

5 8 10 11 12 13 21 22 28 29 30 31 33 35 36 37 39 40 42 45 49 52 53 54 3 4 9 14 15 27 32 44

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53 3 4 9 14 15 27 32 44

sorted run sorted run

Takes is Θ
𝑛

𝐵
block transfers



𝑑-Way Mergesort in External Memory

1. Create 
𝑛

𝑀
sorted runs of length 𝑀

 bring consecutive chunks of size M into internal memory 

 sort each chunk with an efficient sorting algorithm

.   Takes is Θ
𝑛

𝐵
block transfers

2. Merge first 𝑑 ≈
𝑀

𝐵
− 1 sorted runs using 𝑑-way-Merge

3. Keep merging the next runs to complete one round. 

 after one round of merging, number of sorted runs reduced by a factor of 𝑑

4. Keep doing rounds until we get just one sorted run 

𝑆1 𝑆2 𝑆3 𝑆

(𝑑 = 3, priority queue not shown)

 External (𝐵 = 2)

sorted run sorted run sorted run sorted run

5 8 10 11 12 13 21 22 28 29 30 31 33 35 36 37 39 40 42 45 49 52 53 54 3 4 9 14 15 27 32 44

5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53 3 4 9 14 15 27 32 44

sorted run sorted run

Takes is Θ
𝑛

𝐵
block transfers



𝑑-Way Mergesort in External Memory: Running time
 How many rounds?


𝑛

𝑀
runs after initialization

 each round decreases the number of sorted runs by a factor of 𝑑


𝑛

𝑀
/𝑑 runs after one round


𝑛

𝑀
/𝑑𝑘 runs after 𝑘 rounds

 stop when 
𝑛

𝑀

𝑑𝑘
= 1 ⟹ 𝑘 = log𝑑

𝑛

𝑀

 log𝑑
𝑛

𝑀
rounds of merging 

 Each round takes Θ
𝑛

𝐵
block transfers

 Total number of bock transfers is proportional to  
𝑛

𝐵
⋅ log𝑑

𝑛

𝑀 ∈ 𝑂
𝑛

𝐵
⋅ log𝑀/𝐵

𝑛

𝑀

since 𝑑 ≈
𝑀

𝐵
− 1

 One can prove lower bound in external memory model for comparison sorting

Ω
𝑛

𝐵
⋅ log𝑀/𝐵

𝑛

𝑀

 Thus 𝑑-way mergesort is optimal (up to constant factors)
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Dictionaries in External Memory: Motivation

 AVL tree based dictionary implementations 
have poor memory locality

 tree nodes are in non-contiguous
memory locations

 for any tree path, each node is usually 
in a different block

7

2

4

9

3

1

5

8 10

AVL tree
block 1

block 10

block 7

block 5

 In an AVL tree Θ(log 𝑛) blocks are loaded in the worst case

 Idea: define multi-way tree

 one node stores many KVPs

 for multi-way trees, 𝑏 − 1 KVPs ⟺𝑏 subtrees

 For efficient insert/delete, we permit a varying number of KVPs in nodes

 This gives much smaller height than AVL-trees

 smaller height implies fewer block transfers

 First consider a special case: 2-4 trees

 2-4 trees also used for dictionaries  in internal memory

 may be even faster than AVL-trees



Outline

 External Memory  

 Motivation  

 Stream based algorithms

 External sorting

 External dictionaries  

 2-4 Trees

 (a, b)-Trees 

 B-Trees



2-4 Trees Motivation

 Binary Search Tree supports efficient 
search with special key ordering

key 𝑘1 key 𝑘2 key 𝑘3

keys < 𝑘1 𝑘1< keys < 𝑘2 𝑘2< keys < 𝑘3 keys > 𝑘3

key 𝑘

keys < 𝑘

𝑇0

keys > 𝑘

𝑇1

 Need nodes that store more than one key

 how to support efficient search?

 Need additional properties to ensure tree is balanced and therefore insert, 
delete are efficient



2-4 Trees

 Structural properties

 Every node is either
 1-node: one KVP and two subtrees (possibly empty), or

 2-node: two KVPs and three subtrees (possibly empty), or

 3-node: three KVPs and four subtrees (possibly empty)

𝑇0 𝑇1 𝑇2 𝑇3

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 13 14 156 8

∅ ∅ ∅

1-node

3-node

3-node2-node 2-node

empty subtrees 

 allowing 3 types of nodes simplifies insertion/deletion

 All empty subtrees are at the same level

 necessary for ensuring height is logarithmic in the number of KVP stored

 Order property: keys at any node are between the keys in the subtrees

subtree 
immediately to the 

right of 𝑘2

subtree 
immediately to 

the left of 𝑘2

key 𝑘1 key 𝑘2 key 𝑘3

keys < 𝑘1 𝑘1< keys < 𝑘2 𝑘2< keys < 𝑘3 keys > 𝑘3

key-subtree list of the node
< 𝑇0, 𝑘1, 𝑇1, 𝑘2, 𝑇2, 𝑘3, 𝑇3, 𝑘1 >



2-4 Tree Example

 Often do not even show empty subtrees
5 10 12

113 4 13 14 156 8

 Empty subtrees are not part of height 
computation

 Will prove height is O(log 𝑛) later, when we talk about (a,b)-trees

 2-4 tree is a special type of (a,b)-tree

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 13 14 156 8

∅ ∅ ∅

tree of height 1



2-4 Tree: Search Example

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 13 14 166 8

∅ ∅ ∅

 Search 

 similar to search in BST

 search(𝑘) compares key 𝑘 to 𝑘1, 𝑘2 , 𝑘3, and either finds 𝑘 among 𝑘1, 𝑘2 , 
𝑘3 or figures out which subtree to recurse into

 if key is not in tree, search returns parent of empty tree where search stops

 key can be inserted at that node

 search(15)

not found

returned node



2-4 Tree operations

24Tree::search(𝑘, 𝑣 ←root, 𝑝 ←empty subtree)

𝑘: key to search, 𝑣: node where we search; 𝑝: parent of 𝑣

if 𝑣 represents empty subtree

return “not found, would be in 𝑝”

let < 𝑇0, 𝑘1, . . . , 𝑘𝑑 , 𝑇𝑑 > be key-subtrees list at 𝑣

if 𝑘 ≥ 𝑘1

𝑖 ← maximal index such that 𝑘𝑖 ≤ 𝑘

if 𝑘𝑖 = 𝑘

return “at 𝑖th key in 𝑣 ”

else 24Tree::search(𝑘, 𝑇𝑖 , 𝑣 )

else 24Tree::search(𝑘, 𝑇0, 𝑣 )



Example: 2-4 tree Insert

 Example: 24TreeInsert(9)

5 10

∅ ∅ ∅

11

∅ ∅

3 4 6 8

∅ ∅ ∅

node can hold one more item, 
so it’s tempting to insert 9 in it

5 9 10

∅ ∅ ∅

11

∅ ∅

3 4 6 8

∅ ∅ ∅

however, need 1 more subtree, 
since node has 3 keys now!

∅

adding an empty subtree as the 4th

subtree does not work, as all empty 
subtrees must be at the same level



Example: 2-4 tree Insert

 Example: 24TreeInsert(9)

 first step:  24Tree::search(9)

5 10

∅ ∅ ∅

11

∅ ∅

3 4

∅ ∅ ∅

6 86 8



Example: 2-4 tree Insert

 Example: 24TreeInsert(9)

 first step:  24Tree::search(9)

 second step: insert at the leaf node returned by search

5 10

∅ ∅ ∅

11

∅ ∅

3 4

∅ ∅ ∅

6 8 9

∅

note new subtree 
inserted

 adding an empty subtree at the last level causes no problems

 order properties are preserved

 node stays valid, it now has 3 KVPs, which is allowed



13 14 16

Example: 2-4 tree Insert
 Example: 24TreeInsert(17)

 first step is 24Tree::search(17)

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 13 14 166 8

∅ ∅ ∅

 insert at the leaf node returned by search



13 14 16 17

Example: 2-4 tree Insert
 Example: 24TreeInsert(17)

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 6 8

∅ ∅ ∅

overflow, split

∅

 now leaf has 4 KVPs, not allowed, have to fix this



Example: 2-4 tree Insert
 Example: 24TreeInsert(17)

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅ ∅

3 4 6 8

∅ ∅ ∅

13 14 16 17

 now leaf has 4 KVPs, not allowed, have to fix this



Example: 2-4 tree Insert
 Example: 24TreeInsert(17)

5 10 12 15

∅ ∅ ∅

11

∅ ∅

3 4 6 8

∅ ∅ ∅

17

∅ ∅

13 14

∅ ∅ ∅

5 10 12 16 overflow, split5 10 12 16

 splitting is possible because we allow variable node size

 split 3-node into 1-node and 2-node

 order property is preserved after a split

 overflow can propagate to the parent of split node



Example: 2-4 tree Insert
 Example: 24TreeInsert(17)

5 10 12 15

∅ ∅ ∅

11

∅ ∅

3 4 6 8

∅ ∅ ∅

17

∅ ∅

13 14

∅ ∅ ∅

5 10 12 16

 when splitting the root node, need to create new root

split



Example: 2-4 tree Insert
 Example: 24TreeInsert(17)

∅ ∅ ∅

11

∅ ∅

3 4 6 8

∅ ∅ ∅

17

∅ ∅

13 14

∅ ∅ ∅

12

5 10 16



2-4 Tree Insert Pseudocode
24Tree::insert(𝑘)

𝑣 ← 24Tree::search(𝑘) //leaf where k should be

add 𝑘 and an empty subtree in key-subtree-list of 𝑣

while 𝑣 has 4 keys (overflow → node split)

let < 𝑇0, 𝑘1, . . . , 𝑘4, 𝑇4 > be key-subtrees list at 𝑣

if 𝑣 has no parent 

create an empty parent of 𝑣

𝑝 ← parent of 𝑣

𝑣′← new node with keys 𝑘1, 𝑘2 and subtrees 𝑇0, 𝑇1, 𝑇2

𝑣 ′′ ← new node with key 𝑘4 and subtrees 𝑇3, 𝑇4

replace < 𝑣 > by < 𝑣′, 𝑘3, 𝑣 ′′ > in key-subtree-list of 𝑝

𝑣 ← 𝑝 //continue checking for overflow upwards

𝑘’ 𝑘’’

𝑘1 𝑘2 𝑘3 𝑘4

𝑇0 𝑇1 𝑇2 𝑇3 𝑇4

𝑘’ 𝑘3 𝑘’’

𝑘1 𝑘2

𝑇0 𝑇1 𝑇2 𝑇3 𝑇4

node split 𝑘4

𝑣′ 𝑣′′



2-4 Tree: Immediate Sibling

 A node can have an immediate left sibling, immediate right sibling, or both

13 14 16

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 6 8

∅ ∅ ∅

immediate sibling immediate sibling

 Any node except the root must have  
an immediate sibling

illegal 0-node 

6



2-4 Tree: Inorder Successor
 Inorder successor of key 𝑘 is the smallest key in the subtree immediately 

to the right of 𝑘

∅ ∅ ∅

11

∅ ∅

3 4 6 8

∅ ∅ ∅

17

∅ ∅

13 14

∅ ∅ ∅

12

5 10 16

inorder successor 
of key 5

5 10

 Inorder successor is guaranteed to be at a leaf node

 otherwise would have something smaller in the leftmost subtree



2-4 Tree Delete 36

25

18 21

12 19

31

28 33

43

41

39 42

51

48 56 62

 Example: delete(21)

 Search for key to delete

∅ ∅ ∅∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

 if a node found has more than 1 key, it is tempting to delete it directly

22 24



2-4 Tree Delete 36

25

18

12 19

31

28 33

43

41

39 42

51

48 56 62

 Example: delete(21)

 Search for key to delete

∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

 if a node found has more than 1 key, it is tempting to delete it directly

illegal, 1 key but 3 
subtrees

 however, can delete the key directly only if a node is a leaf
 when we delete a key, we need to delete 1 subtree, easy only at a leaf

∅ ∅ ∅

22 24



2-4 Tree Delete 36

25

18 21

12 19

31

28 33

43

41

39 42

51

48 56 62

 Example: delete(21)

 Search for key to delete

∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

 can delete keys only from a leaf node, as need to delete a subtree as well

 if the key is in a node which is not a leaf, replace key with its inorder successor 

∅ ∅ ∅

22 2422



2-4 Tree Delete 36

25

18 22

12 19

31

28 33

43

41

39 42

51

48 56 62

 Example: delete(21)

 Search for key to delete

∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

 can delete keys only from a leaf node, as need to delete a subtree as well

 if the key is in a node which is not a leaf, replace key with its inorder successor 

∅ ∅ ∅

21 24



2-4 Tree Delete 36

25

18 22

12 19

31

28 33

43

41

39 42

51

48 56 62

 Example: delete(21)

 Search for key to delete

∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

 can delete keys only from a leaf node, as need to delete a subtree as well

 if the key is in a node which is not a leaf, replace key with its inorder successor 

∅ ∅ ∅

21 24

 delete key 21 and an empty subtree



2-4 Tree Delete 36

25

18 22

12 19

31

28 33

43

41

39 42

51

48 56 62

 Example: delete(21)

 Search for key to delete

∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

 can delete keys only from a leaf node, as need to delete a subtree as well

 if the key is in a node which is not a leaf, replace key with its inorder successor 

∅ ∅

 delete key 21 and an empty subtree

 order property is preserved and we are done

24



2-4 Tree Delete 36

25

18 21

12 19 24

31

28 33

43

41

39 42

51

48 56 62

 Example: delete(43)

 Search for key to delete

∅ ∅∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

 can delete keys only from a leaf node

 replace key with in-order successor



2-4 Tree Delete 36

25

18 21

12 19 24

31

28 33

48

41

39 42

51

43 56 62

 Example: delete(43)

 Search for key to delete

∅ ∅∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

 can delete keys only from a leaf node

 replace key with in-order successor 
 delete key 43 and a subtree



36

25

18 21

12 19 24

31

28 33

48

41

39 42

51

56 62

2-4 Tree Delete

 Example: delete(43)

underflow

 rich immediate sibling, transfer key from sibling, with help from the parent
 sibling is rich if it is a 2-node or 3-node

 adjacent subtree from sibling is also transferred

∅ ∅∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅



25

18 21

12 19 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

key order is 
preserved

∅ ∅∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅

36

 Example: delete(43)
 rich immediate sibling, transfer key from sibling, with help from the parent

 sibling is rich if it is a 2-node or 3-node

 adjacent subtree from sibling is also transferred

 order property is preserved



36

25

18 21

12 19 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

 Example: delete(19)
 first search(19)

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅



36

25

18 21

12 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

 Example: delete(19)

underflow

 first search(19)

 then delete key 19 (and an empty subtree)  from the node

 immediate siblings exist, but not rich, cannot transfer

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅



36

25

18 21

12 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

 Example: delete(19)

 immediate siblings exist, but not rich, cannot transfer
 merge with right immediate sibling with help from parent

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅



36

25

12 21 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

18

 Example: delete(19)

 immediate siblings exist, but not rich, cannot transfer
 merge with right immediate sibling with help from parent

 all subtrees merged together as well

 structural and order properties are preserved

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅



36

25

18

12 21 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

 Example: delete(42)

 first search(42)

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅

 delete key 42 with one empty subtree



36

25

18

12 21 24

31

28 33

48

41

39

56

51 62

2-4 Tree Delete

 Example: delete(42)

 first search(42)

 the only immediate sibling is not rich, perform merge

underflow

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅



36

25

18

12 21 24

31

28 33

48

39 41

56

51 62

2-4 Tree Delete

 Example: delete(42)

 first search(42)

 the only immediate sibling is not rich, perform merge
 all subtrees merged together as well

underflow

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅



36

25

18

12 21 24

31

28 33

48

39 41

56

51 62

2-4 Tree Delete

 Example: delete(42)

 merge operation can cause underflow at the parent node

underflow

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅

 while needed, continue fixing the tree upwards
 possibly all the way to the root



36

25

18

12 21 24

31

28 33

48

39 41

56

51 62

2-4 Tree Delete

 Example: delete(42)

 the only sibling is not rich, perform a merge

underflow

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅



36

25

18

12 21 24

31

28 33

48 56

39 41 51 62

2-4 Tree Delete

 Example: delete(42)

underflow

 the only sibling is not rich, perform a merge

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅

 subtrees are merged as well
 continue fixing the tree upwards



36

25

18

12 21 24

31

28 33

48 56

39 41 51 62

2-4 Tree Delete

 Example: delete(42)
 the only sibling is not rich, perform a merge

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅



25 36

18

12 21 24

31

28 33

48 56

39 41 51 62

2-4 Tree Delete

 Example: delete(42)

 the only sibling is not rich, perform merge

 underflow at parent node

underflow

 it is the root, delete root

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅



2-4 Tree Delete

25 36

18

12 21 24

31

28 33

48 56

39 41 51 62

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅

 Example: delete(42)

 the only sibling is not rich, perform merge

 underflow at parent node

 it is the root, delete root



36

25

12

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

 Example: delete(28)

 first search(28)

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅

 delete key 28 with one empty subtree

18 20

19 24

∅ ∅
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2-4 Tree Delete

 Example: delete(28)

 first search(28)

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅

 delete key 28 with one empty subtree

18 20

19 24

∅ ∅

underflow
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2-4 Tree Delete

 Example: delete(28)

 first search(28)

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅

 delete key 28 with one empty subtree

 merge with the only immediate sibling, who is not rich

18 20

19 24

∅ ∅

underflow
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25
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48

41

39 42
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51 62

2-4 Tree Delete

 Example: delete(28)

 first search(28)

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅

 delete key 28 with one empty subtree

 merge with the only immediate sibling, who is not rich

18 20

19 24

∅ ∅

31 33

underflow



36

25

12

48

41

39 42

56

51 62

2-4 Tree Delete

 Example: delete(28)

 transfer from a rich immediate sibling

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅

18 20

19 24

∅ ∅

31 33
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2-4 Tree Delete

 Example: delete(28)

 transfer from a rich immediate sibling

 together with a subtree

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅

19 24

∅ ∅

31 33

2518



2-4 Tree Delete Summary

 If key not at a leaf node, swap with inorder successor (guaranteed at leaf node)

 Delete key and one empty subtree from the leaf node involved in swap

 If underflow

 If there is an immediate sibling with more than one key, transfer

 no further underflows caused 

 do not forget to transfer a subtree as well

 convention: if two siblings have more than one key, transfer with the right 
sibling

 If all immediate siblings have only one key, merge

 there must be at least one sibling, unless root

 if root, delete

 convention: if two immediate siblings with one key, merge with the right one

 merge may cause underflow at the parent node, continue to the parent and fix 
it, if necessary



Deletion from a 2-4 Tree
24Tree::delete(𝑘)

𝑣 ← 24Tree::search(𝑘) //node containing k

if 𝑣 is not a leaf

swap 𝑘 with its inorder successor 𝑘′

swap 𝑣 with leaf that contained 𝑘′

delete 𝑘 and one empty subtree in key-subtree-list of 𝑣

while 𝑣 has 0 keys // underflow

if 𝑣 is the root, delete 𝑣 and break

if 𝑣 has immediate sibling 𝑢 with 2 or more KVPs  // transfer, then done!

transfer the key of 𝑢 that is nearest to 𝑣 to 𝑝

transfer the key of 𝑝 between 𝑢 and 𝑣 to 𝑣

transfer the subtree of 𝑢 that is nearest to  𝑣 to 𝑣

break

else // merge and repeat

𝑢 ← immediate sibling of 𝑣

transfer the key of 𝑝 between 𝑢 and 𝑣 to 𝑢

transfer the subtree of 𝑣 to 𝑢

delete node 𝑣

𝑣 ← 𝑝



2-4 Tree Summary

 2-4 tree has height O(log𝑛)

 in internal memory, all operations have run-time O(log 𝑛)

 this is no better than AVL-trees in theory

 but 2-4 trees are faster than AVL-trees in practice, especially when 
converted to binary search trees called red-black trees

 no details

 2-4 tree has height Ω (log 𝑛)

 𝑛 is  the number of KVPs

 for a tree of height ℎ

 𝑛 ≤ 3(40 + 41…+ 4ℎ)

 𝑛 ≤ 4ℎ+1 − 1

 log4 𝑛 + 1 − 1 ≤ ℎ

 thus ℎ is  Ω (log𝑛)

 So 2-4 tree is not significantly better than AVL-tree wrt block transfers

 But can generalize the concept to decrease the height
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(𝑎, 𝑏)-Trees

 2-4 Tree is a specific type of (𝑎, 𝑏)-tree

 (𝑎, 𝑏)-tree satisfies

 each node has at least 𝑎 subtrees, unless it is the root  

 root must have at least 2 subtrees

 each node has at most 𝑏 subtrees

 if node has 𝑑 subtrees, then it stores 𝑑 − 1 key-value pairs (KVPs)

 all empty subtrees are at the same level

 keys in the node are between keys in the corresponding  subtrees

 requirement: 𝑎 ≤
𝑏

2
= (𝑏 + 1)/2

∅ ∅ ∅

35

14 20 26 38 44 50 56

10 12 16 18 22 24 28 30 32 52 54 58 6046 4840 4234 36

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅ ∅

(3, 5)-tree, also a valid (3, 6)-tree



(𝑎, 𝑏)-Trees: Root

 Why special condition for the root?

 Needed for (a,b)-tree storing very few KVP

 (3,5) tree storing only 1 KVP

35

∅ ∅

 Could not build it if forced the root to have at least 3 children

 remember # keys at any node is one less than number of subtrees



(𝑎, 𝑏)-Trees: Condition on 𝑎 Explained
 Because 𝑎 ≤ ( Τ𝑏 + 1) 2 search, insert, delete work just like for 2-4 trees

 straightforward redefinition of underflow and overflow

 For example, for (3,5)-tree

 at least 3 children, at most 5 

 allowed:  2-node, 3-node, 4-node

 during insert, overflow if get a 5-node

38 44 50 55 60 38 44 38 44

2 node 2 node

 2-node is smallest allowed node

 If 𝑎 > ( Τ𝑏 + 1) 2 , no valid split exists for overflowed node

 this is similar to requiring you split a pie in 2 parts, and each part is bigger 
than half!

 for example if allow (4,5)-tree

 allowed: 3-node, 4-node

 overflow when get 5-node

 equal (best possible) split of 5-node results in two 2-node

 2-node is not allowed for (4,5)-tree

⇒



(𝑎, 𝑏)-Trees: Condition on 𝑎 Explained

 Require 𝑎 ≤ ( Τ𝑏 + 1) 2

 In general, overflow means node has 𝑏 + 1 subtrees
 split in the middle ⇒ two new nodes have ( Τ𝑏 + 1) 2 and ( Τ𝑏 + 1) 2 subtrees

 since 𝑎 ≤ ( Τ𝑏 + 1) 2 ≤ ( Τ𝑏 + 1) 2 , each new node has at least 𝑎 subtrees, as required

….
…. ….

( Τ𝑏 + 1) 2 ( Τ𝑏 + 1) 2

𝑏 + 1 subtrees

at least 𝑎



(𝑎, 𝑏)-Trees Delete
 For example, for (3,5)-tree

 at least 3 children, at most 5 

 each node is at least a 2-node, at most a 4-node

 during delete, underflow if get a 1-node

 if we have an immediate sibling which is rich (3 or 4-node), do transfer

 otherwise, do merge

 guaranteed to have at least one sibling which is a 2-node



Height of (𝑎, 𝑏)-tree

 Height = number of levels not counting  empty subtrees

13 14 16

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 6 8

∅ ∅ ∅

5 10 12 height = 1



Height of  (𝑎, 𝑏)-tree

11

2𝑎0

2𝑎1

2𝑎2

# of nodes

0

1

2

h

level

3
………….

2𝑎ℎ−1

 Consider (a,b)-tree with the smallest number of KVP and of height ℎ

 Let 𝑛 the number of KVP in any (𝑎, 𝑏)-tree of height ℎ

= 2𝑎ℎ − 1+෍
𝑖=0

ℎ−1

2𝑎𝑖 = 𝟏 + 2(𝑎 − 1)෍
𝑖=0

ℎ−1

𝑎𝑖

𝒂𝒉 − 𝟏

𝒂 − 𝟏

 Height of tree with 𝑛 KVPs is 𝑂 log𝑎 𝑛 = 𝑂 Τlog𝑛 log 𝑎

(𝑎 − 1)𝟏

𝑛 ≥ 2𝑎ℎ − 1

 red node (the root)  has 1 KVP, blue nodes have (𝑎 − 1) KVP

, therefore, log𝑎
𝑛+1

2
≥ ℎ

# of KVPs =



(𝑎, 𝑏)-Tree Analysis in Internal/External Memory

 Internal memory

 search, insert, delete each require visiting Θ ℎ𝑒𝑖𝑔ℎ𝑡 nodes

 height is 𝑂 Τlog𝑛 log𝑎

 recall that 𝑎 ≤
𝑏

2
is required for insert and delete to work correctly

 therefore, chose 𝑎 =
𝑏

2
to minimize the height

 store from 𝑎 to 𝑏 items at a node: work at a node can be done in 𝑂 log 𝑏 time

 total cost

 this is not better than AVL-trees in internal memory

 External memory

 we count just block transfers

 running time is 𝑂 Τlog𝑛 log 𝑎 , assuming each node fits into one block

 makes sense to make a as large as possible so that a node still fits into one block 

= 𝑂
log 𝑏

log 𝑏 − 1
⋅ log 𝑛 = 𝑂 log 𝑛𝑂

log𝑛

log 𝑎
⋅ log 𝑏 = 𝑂

log 𝑛

log
𝑏
2

⋅ log 𝑏



Outline

 External Memory  

 Motivation  

 Stream based algorithms

 External sorting

 External dictionaries  

 2-4 Trees

 (a, b)-Trees
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B-trees: Motivation
 B-tree is a type of (𝑎, 𝑏)-tree  tailored to the external memory model

 Each block in external memory stores one tree node

 Choose 𝑏 so that the largest node (𝑏 subtrees) fits into one block

 store 𝑏 − 1 keys directly (not through reference)

 𝑏 − 1 value references, 𝑏 subtree references, reference to parent

 If 𝑎 is small, would allow wasting most block space
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 Height is 𝑂 Τlog𝑛 log 𝑎 , so small 𝑎 leads to large height and bad running time



B-trees: Definition
 For external memory use (𝑎, 𝑏)-tree s.t.

 largest possible node (i.e. 𝑏 subtrees) still fits into a block

 and 𝑎 is as large as possible, recall that largest allowed 𝑎 = 𝑏/2

 each block will be at least half full

 Thus use ( 𝑏/2 , 𝑏)- tree for external memory

 This is defined as  B-tree

 We usually specify B-tree by just giving 𝑏

 𝑏 is called the order of B-tree

 B-tree or order 𝑏 is a ( 𝑏/2 , 𝑏)-tree

 Example: node for B-tree of order 5
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 Typically 𝑏 ∈ Θ 𝐵

 𝐵 = 𝑏 ∗ 𝑐𝑜𝑛𝑠𝑡



B-trees in External Memory
 Close-up on one node in one block

 In this example, 12  references and 5 keys fit into one block, so B-tree can 
have order 6

 Values can be stored in the block directly if they do not need much space, 
otherwise store them by reference

 storing values by reference is ok as we do not need values during tree 
search



B-tree Analysis in External Memory
 Search, insert, and delete each requires visiting Θ(ℎ𝑒𝑖𝑔ℎ𝑡) nodes

 Θ(ℎ𝑒𝑖𝑔ℎ𝑡) block transfers

 Work within a node is done in internal memory, no block transfers

 The height is  Θ log𝑏 𝑛 = Θ log𝐵 𝑛

 since 𝑏 ∈ Θ 𝐵

 So all operations require Θ log𝐵 𝑛 block transfers

 this is asymptotically optimal

 There are variants that are even better in practice

 B-trees are hugely important for storing databases (cs448)
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Useful Fact about (𝑎, 𝑏)-trees

Proof: Put one stone on each empty subtree and pass the stones up the tree. Each node keeps 1 stone per 

KVP, and passes the rest to its parent. Since for each node, #KVP = # children – 1, each node will pass 
only 1 stone to its parent.  This process stops at the root, and the root will pass 1 stone outside the tree. 
At the end, each KVP has 1 stone, and 1 stone is outside the tree.

 number of of KVP = number of empty subtrees – 1 in any (𝑎, 𝑏)-tree 
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Example of B-tree usage

 𝐵-tree of order 200

……………

…………………………………

200 nodes

2002 nodes

2003 empty subtrees

 if we store root in internal memory, then only 2 block reads 
are needed to retrieve any item

 AVL tree of height at least 23 to store as many KVPs

1 node (root)

∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅

 𝐵-tree of order 200 and height 2 can store up to 2003− 1 KVPs
 from the ‘useful fact’ proven before


