Tutorial 06: February 27

1. [E] Suppose we have *n* English words (26-letter alphabet), where the combined length of all words is ℓ . Give an algorithm to sort the strings in $O(\ell)$ time in lexicographical ordering, e.g., "*a*" < "*ab*" < "*b*".

2. [M] Suppose we have an array \mathcal{A} of numbers such that $\mathcal{A}[i] = t\sqrt{i}$ for $0 \le i \le n-1$ and some positive number t. Show that, using interpolation search, searching for t in \mathcal{A} takes $O(\log \log n)$ time.

3. [H] In this problem, we will explore an alternate implementation of a min-ordered priority queue. That is, design a data structure such that inserting a new element into the priority queue takes $O(\log n)$ expected time, while deleting the minimum element from the priority queue takes O(1) expected time.