Tutorial 9: March 20

1. $[\mathrm{E}]$ Consider the following points being stored in a 2 D range tree: $(2,12),(17,77),(23,92),(40,47)$, $(55,91),(67,27),(89,79),(99,53),(10,23),(35,7),(61,40),(95,56),(22,42),(88,15),(42,2)$.
a) Draw the primary tree for this range tree.
b) Draw the corresponding associate trees for the points $(88,15),(61,40)$ and $(67,27)$.
c) Perform a range-search with the query rectangle $[35,90] \times[5,30]$, indicating all boundary nodes and topmost inside nodes.
d) Programming Challenge: In the file range_tree. cpp, implement the function topmost_inside_nodes, which returns all the topmost inside nodes in a 1 D range tree for a given range query.
2. [H] Suppose you have a set of n horizontal line segments in a plane, where line segment ℓ_{i} has coordinates $\left(x_{i}, y_{i}\right)$ and $\left(x_{i}^{\prime}, y_{i}\right)$. Assume that all coordinates are integers.

For each of the range-search queries below, design a data structure and provide an algorithm to answer the queries in $O\left(\log ^{3} n+s\right)$ time, where s is the number of lines reported. Each range-search query is a rectangle of the form $[a, b] \times[c, d]$.
a) The algorithm reports all line segments that are entirely contained inside the query rectangle. For the example below, the algorithm would return $\ell_{2}, \ell_{5}, \ell_{7}$ and ℓ_{8}.
b) The algorithm reports all line segments that intersect the query rectangle. For the example below, the algorithm reports all line segments except ℓ_{4} and ℓ_{9}.

3. [E] For Karp-Rabin pattern matching, consider the following hash function for strings over the alphabet $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$:

$$
\begin{aligned}
h(P)= & (\# \text { of occurrences of } \mathrm{A})+2 \times(\# \text { of occurrences of } \mathrm{C}) \\
& +3 \times(\# \text { of occurrences of } \mathrm{G})+4 \times(\# \text { of occurrences of } \mathrm{T})
\end{aligned}
$$

Given the pattern $P=$ TAGCAT and sequence $T=$ TGCCGATGTAGCTAGCAT, use the table below to show all the character comparisons performed during Karp-Rabin pattern matching. Start a new pattern shift (in which character comparison occurs) in a new row. You may not need all the available space.

T	G	C	C	G	A	T	G	T	A	G	C	T	A	G	C	A	T

Table 1: Table for Karp-Rabin problem.

