This tutorial handout covers problems from Text Compression (Module 10) and External Memory (Module 11). There are 3 problems in total - 2 easy [E] and 1 hard [H$]$.

1. [E] Consider Burrows-Wheeler Transforms:
a) Encode the following string using BWT: MISSISSIPPI
b) Decode the following string using the inverse BWT: AIMOEOOPN\$TOA
2. [E] For the following $(2,4)$-Tree, perform the following operations:
a) Insert 30, Insert 75, Insert 24, Insert 56
b) Delete 56, Delete 24, Delete 75, Delete 30

When deciding between successor/predecessor, choose the successor. When deciding between left or right sibling for transfer/merge, select the right sibling.

3. $[\mathrm{H}]$ Consider a modification to LZW to expand the dictionary faster: at every step, the encoder adds two new dictionary entries instead of one, when possible; one entry corresponds to the current string being encoded + the next character (like the usual LZW), while the other entry corresponds to the current string being encoded + the next two characters.

For example, if the text is APPLE, then after encoding A (as 65), the encoder adds two entries to the dictionary: AP at 128, and APP at 129. Note that after encoding L (as 76), the encoder only adds one new entry, LE at 134, and that no entries are added after encoding E (as 69).
a) Encode the following string with the modified LZW: BAN_ANANAS_AND_BANANAS.
b) Modify the LZW decoding algorithm to decode strings that were coded with this modified LZW.
c) Decode the following string that was encoded with the modified LZW:

$$
82-79-84-79-95-77-69-138-78-133-147-128-143
$$

