CS 240 – Data Structures and Data Management

Module 2: Priority Queues

T. Biedl É. Schost O. Veksler Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-02-10 12:27

Biedl, Schost, Veksler (SCS, UW) [CS240 – Module 2](#page-31-0) Winter 2021 1 / 25

1 [Priority Queues](#page-1-0)

- [Abstract Data Types](#page-2-0)
- [ADT Priority Queue](#page-6-0)
- [Binary Heaps](#page-10-0) \bullet
- [Operations in Binary Heaps](#page-16-0)
- PQ-sort and [Heapsort](#page-22-0)
- [Towards the Selection Problem](#page-30-0)

1 [Priority Queues](#page-1-0)

[Abstract Data Types](#page-2-0)

- [ADT Priority Queue](#page-6-0)
- [Binary Heaps](#page-10-0) \odot
- [Operations in Binary Heaps](#page-16-0) \circledcirc
- PQ-sort and [Heapsort](#page-22-0)
- [Towards the Selection Problem](#page-30-0)

Abstract Data Type (ADT): A description of information and a collection of operations on that information.

The information is accessed *only* through the operations.

We can have various **realizations** of an ADT, which specify:

- How the information is stored (**data structure**)
- How the operations are performed (**algorithms**)

Stack ADT

Stack: an ADT consisting of a collection of items with operations:

- o *push*: inserting an item
- \circ pop: removing (and typically returning) the most recently inserted item

Items are removed in LIFO (last-in first-out) order. Items enter the stack at the top and are removed from the top. We can have extra operations: size, isEmpty, and top

Applications: Addresses of recently visited web sites, procedure calls

Realizations of Stack ADT

- using arrays
- using linked lists

Queue ADT

Queue: an ADT consisting of a collection of items with operations:

- o enqueue: inserting an item
- dequeue: removing (and typically returning) the least recently inserted item

Items are removed in FIFO (first-in first-out) order. Items enter the queue at the rear and are removed from the front. We can have extra operations: size, isEmpty, and front

Applications: Waiting lines, printer queues

Realizations of Queue ADT

- using (circular) arrays
- using linked lists

1 [Priority Queues](#page-1-0)

• [Abstract Data Types](#page-2-0)

[ADT Priority Queue](#page-6-0)

- [Binary Heaps](#page-10-0) \odot
- [Operations in Binary Heaps](#page-16-0) \circledcirc
- PQ-sort and [Heapsort](#page-22-0)
- [Towards the Selection Problem](#page-30-0)

Priority Queue ADT

Priority Queue: An ADT consisting of a collection of items (each having a **priority**) with operations

• *insert*: inserting an item tagged with a priority

 \circ deleteMax: removing and returning the item of highest priority deleteMax is also called extractMax or getmax. The priority is also called key.

The above definition is for a **maximum-oriented** priority queue. A **minimum-oriented** priority queue is defined in the natural way, replacing operation deleteMax by deleteMin,

Applications: typical "todo" list, simulation systems, sorting

Using a Priority Queue to Sort

$$
PQ-Sort(A[0..n-1])
$$
\n1. initialize PQ to an empty priority queue\n2. **for** $i \leftarrow 0$ **to** $n-1$ **do**\n3. PQ.insert(A[i])\n4. **for** $i \leftarrow n-1$ **down to** 0 **do**\n5. A[i] $\leftarrow PQ$. deleteMax()

- Note: Run-time depends on how we implement the priority queue.
- Sometimes written as: $O(\text{initialization} + n \cdot \text{insert} + n \cdot \text{deleteMax})$

Realizations of Priority Queues

Realization 1: unsorted arrays

- \circ insert: $O(1)$
- \bullet deleteMax: $O(n)$

Note: We assume **dynamic arrays**, i. e., expand by doubling as needed. (Amortized over all insertions this takes $O(1)$ extra time.)

Using unsorted linked lists is identical. PQ -sort with this realization yields selection sort.

Realization 2: sorted arrays

- \circ insert: $O(n)$
- \circ deleteMax: $O(1)$

Using sorted linked lists is identical. PQ-sort with this realization yields insertion sort.

Biedl, Schost, Veksler (SCS, UW) [CS240 – Module 2](#page-0-0) Winter 2021 7 / 25

1 [Priority Queues](#page-1-0)

- [Abstract Data Types](#page-2-0)
- [ADT Priority Queue](#page-6-0)

[Binary Heaps](#page-10-0) \bullet

- [Operations in Binary Heaps](#page-16-0) \circledcirc
- PQ-sort and [Heapsort](#page-22-0)
- [Towards the Selection Problem](#page-30-0)

Realization 3: Heaps

A **(binary) heap** is a certain type of binary tree.

You should know:

- A **binary tree** is either
	- \blacktriangleright empty, or
	- \triangleright consists of three parts: a node and two binary trees (left subtree and right subtree).
- Terminology: root, leaf, parent, child, level, sibling, ancestor, descendant, etc.
- \bullet Any binary tree with n nodes has height at least $log(n+1)-1 \in \Omega(\log n)$.

Example Heap

 $\sqrt{ }$ In our examples we only show the priorities, and we show them directly in the node. A more accurate picture would be $\overbrace{p_{\text{rion}}\dots p_{\text{rionity}}}=50$, $\overbrace{\text{other info}}$

Biedl, Schost, Veksler (SCS, UW) [CS240 – Module 2](#page-0-0) Winter 2021 9/25

Heaps – Definition

A **heap** is a binary tree with the following two properties:

- ¹ **Structural Property:** All the levels of a heap are completely filled, except (possibly) for the last level. The filled items in the last level are left-justified.
- ² **Heap-order Property:** For any node i, the key of the parent of i is larger than or equal to key of i.

The full name for this is *max-oriented binary heap*.

Lemma: The height of a heap with *n* nodes is $\Theta(\log n)$.

Biedl, Schost, Veksler (SCS, UW) [CS240 – Module 2](#page-0-0) Winter 2021 10 / 25

Storing Heaps in Arrays

Heaps should not be stored as binary trees!

Let H be a heap of n items and let A be an array of size n. Store root in A[0] and continue with elements level-by-level from top to bottom, in each level left-to-right.

Heaps in Arrays – Navigation

It is easy to navigate the heap using this array representation:

- o the *root* node is at index 0 (We use "node" and "index" interchangeably in this implementation.)
- the *last* node is $n 1$ (where *n* is the size)
- the left child of node i (if it exists) is node $2i + 1$
- the right child of node i (if it exists) is node $2i + 2$
- the *parent* of node *i* (if it exists) is node $\lfloor \frac{i-1}{2} \rfloor$ $\frac{-1}{2}$
- **•** these nodes exist if the index falls in the range {0, ..., n-1}

We should hide implementation details using helper-functions!

 \bullet functions root(), last(), parent(i), etc.

Some of these helper-functions need to know n (but we omit this in the code for simplicity).

Biedl, Schost, Veksler (SCS, UW) [CS240 – Module 2](#page-0-0) Winter 2021 12 / 25

1 [Priority Queues](#page-1-0)

- [Abstract Data Types](#page-2-0)
- [ADT Priority Queue](#page-6-0)
- [Binary Heaps](#page-10-0) \odot

[Operations in Binary Heaps](#page-16-0)

- PQ-sort and [Heapsort](#page-22-0)
- [Towards the Selection Problem](#page-30-0)

Insert in Heaps

- Place the new key at the first free leaf
- \bullet The heap-order property might be violated: perform a $fix-up$:

$fix-up(A, i)$	
i : an index corresponding to a node of the heap	
1 .	while parent(i) exists and $A[parent(i)]$. key < $A[i]$. key do
2 .	$swap A[i]$ and $A[parent(i)]$
3 .	$i \leftarrow parent(i)$

The new item "bubbles up" until it reaches its correct place in the heap.

```
Time: O(height of heap) = O(\log n).
```
Biedl, Schost, Veksler (SCS, UW) [CS240 – Module 2](#page-0-0) Winter 2021 13 / 25

fix-up example

deleteMax in Heaps

- The maximum item of a heap is just the root node.
- We replace root by the last leaf (last leaf is taken out).
- \bullet The heap-order property might be violated: perform a $fix-down$:

```
fix-down(A, i, n \leftarrow A \text{.size})A: an array that stores a heap of size n
i: an index corresponding to a node of the heap
1. while i is not a leaf do
2. i \leftarrow left child of i // Find the child with the larger key
3. if (i has right child and A[right child of i].key > A[j].key)
 4. j \leftarrow right child of i
 5. if A[i].key ≥ A[j].key break
 6. swap A[j] and A[i]7. i \leftarrow j
```
Time: $O(\text{height of heap}) = O(\log n)$.

deleteMax example

Priority Queue Realization Using Heaps

 \bullet Store items in array A and globally keep track of size

$$
\begin{array}{|l|}\n\hline\n\text{insert}(x) \\
1. & \text{increase size} \\
2. & \ell \leftarrow \text{last}() \\
3. & A[\ell] \leftarrow x \\
4. & \text{fix-up}(A, \ell)\n\end{array}
$$

insert and deleteMax: O(log n) **time**

Biedl, Schost, Veksler (SCS, UW) [CS240 – Module 2](#page-0-0) Winter 2021 17 / 25

1 [Priority Queues](#page-1-0)

- [Abstract Data Types](#page-2-0)
- [ADT Priority Queue](#page-6-0)
- [Binary Heaps](#page-10-0) \odot
- [Operations in Binary Heaps](#page-16-0) \circledcirc
- PQ-sort and [Heapsort](#page-22-0)
- [Towards the Selection Problem](#page-30-0)

Sorting using heaps

• Recall: Any priority queue can be used to *sort* in time

 $O(\text{initialization} + n \cdot \text{insert} + n \cdot \text{deleteMax})$

Using the binary-heaps implementation of PQs, we obtain:

 $PQsortWithHeaps(A)$ 1. initialize H to an empty heap 2. **for** i ← 0 **to** n − 1 **do** 3. H*.*insert(A[i]) 4. **for** i ← n − 1 **down to** 0 **do** 5. $A[i] \leftarrow H$ *. deleteMax*()

- \bullet both operations run in $O(\log n)$ time for heaps
- \rightarrow PQ-Sort using heaps takes $O(n \log n)$ time.
	- Can improve this with two simple tricks → **Heapsort**
		- Heaps can be built faster if we know all input in advance.
		- Can use the same array for input and heap. \rightsquigarrow $O(1)$ auxiliary space!

Biedl, Schost, Veksler (SCS, UW) [CS240 – Module 2](#page-0-0) Winter 2021 18 / 25

Building Heaps with Fix-up

Problem: Given *n* items all at once (in $A[0 \cdots n-1]$) build a heap containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

```
simpleHeapBuilding(A)A: an array
1. \quad initialize H as an empty heap
2. for i ← 0 to A.size() − 1 do
3. H.insert(A[i])
```
This corresponds to doing $fix-ups$ Worst-case running time: Θ(n log n)*.*

Building Heaps with Fix-down

Problem: Given *n* items all at once (in $A[0 \cdots n-1]$) build a heap containing all of them.

Solution 2: Using fix-downs instead:

heapify (A) A: an array 1. $n \leftarrow A.size()$ 2. **for** i ← parent(last()) **downto** root() **do** 3. fix-down (A, i, n)

A careful analysis yields a worst-case complexity of $\Theta(n)$. A heap can be built in linear time.

heapify example

HeapSort

- \bullet Idea: PQ -sort with heaps.
- \circ $O(1)$ auxiliary space: Use same input-array A for storing heap.

```
HeapSort(A, n)
1. // heapify
2. n ← A.size()
3. for i ← parent(last()) downto 0 do
4. fix-down(A, i, n)5. // repeatedly find maximum
6. while n > 17. \frac{1}{2} // 'delete' maximum by moving to end and decreasing n8. swap items at A[root()] and A[last()]9. decrease n
10. fix-down(A,root(), n)
```
The for-loop takes $\Theta(n)$ time and the while-loop takes $O(n \log n)$ time.

Biedl, Schost, Veksler (SCS, UW) [CS240 – Module 2](#page-0-0) Winter 2021 22 / 25

Heapsort example

Continue with the example from heapify:

Heap summary

- **Binary heap**: A binary tree that satisfies structural property and heap-order property.
- Heaps are one possible realization of ADT PriorityQueue:
	- \triangleright insert takes time $O(\log n)$
	- \blacktriangleright deleteMax takes time $O(\log n)$
	- Also supports findMax in time $O(1)$
- A binary heap can be built in linear time.
- \circ PQ-sort with binary heaps leads to a sorting algorithm with $O(n \log n)$ worst-case run-time $(\rightsquigarrow$ HeapSort)
- We have seen here the *max-oriented version* of heaps (the maximum priority is at the root).
- There exists a symmetric *min-oriented version* that supports *insert* and *deleteMin* with the same run-times.

Biedl, Schost, Veksler (SCS, UW) [CS240 – Module 2](#page-0-0) Winter 2021 24 / 25

1 [Priority Queues](#page-1-0)

- [Abstract Data Types](#page-2-0)
- [ADT Priority Queue](#page-6-0)
- [Binary Heaps](#page-10-0) \odot
- [Operations in Binary Heaps](#page-16-0) \circledcirc
- PQ-sort and [Heapsort](#page-22-0)

[Towards the Selection Problem](#page-30-0)

Finding the largest items

Problem: Find the kth largest item in an array A of n distinct numbers.

Solution 1: Make k passes through the array, deleting the maximum number each time. Complexity: Θ(kn).

Solution 2: Sort A, then return A[n−k]. Complexity: Θ(n log n).

Solution 3: Scan the array and maintain the k largest numbers seen so far in a min-heap

Complexity: $\Theta(n \log k)$.

Solution 4: Create a max-heap with heapify(A). Call deleteMax(A) k times.

Complexity: $\Theta(n + k \log n)$.