
CS 240 – Data Structures and Data Management

Module 2: Priority Queues

T. Biedl É. Schost O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-02-10 12:27

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 1 / 25

Outline

1 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Operations in Binary Heaps
PQ-sort and Heapsort
Towards the Selection Problem

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021

Outline

1 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Operations in Binary Heaps
PQ-sort and Heapsort
Towards the Selection Problem

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021

Abstract Data Types

Abstract Data Type (ADT): A description of information and a
collection of operations on that information.

The information is accessed only through the operations.

We can have various realizations of an ADT, which specify:
How the information is stored (data structure)
How the operations are performed (algorithms)

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 2 / 25

Stack ADT

Stack: an ADT consisting of a collection of items with operations:
push: inserting an item
pop: removing (and typically returning) the most recently inserted
item

Items are removed in LIFO (last-in first-out) order.
Items enter the stack at the top and are removed from the top.
We can have extra operations: size, isEmpty, and top

Applications: Addresses of recently visited web sites, procedure calls

Realizations of Stack ADT
using arrays
using linked lists

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 3 / 25

Queue ADT

Queue: an ADT consisting of a collection of items with operations:
enqueue: inserting an item
dequeue: removing (and typically returning) the least recently
inserted item

Items are removed in FIFO (first-in first-out) order.
Items enter the queue at the rear and are removed from the front.
We can have extra operations: size, isEmpty, and front

Applications: Waiting lines, printer queues

Realizations of Queue ADT
using (circular) arrays
using linked lists

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 4 / 25

Outline

1 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Operations in Binary Heaps
PQ-sort and Heapsort
Towards the Selection Problem

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021

Priority Queue ADT

Priority Queue: An ADT consisting of a collection of items (each having
a priority) with operations

insert: inserting an item tagged with a priority
deleteMax: removing and returning the item of highest priority

deleteMax is also called extractMax or getmax.
The priority is also called key .

The above definition is for a maximum-oriented priority queue. A
minimum-oriented priority queue is defined in the natural way, replacing
operation deleteMax by deleteMin,

Applications: typical “todo” list, simulation systems, sorting

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 5 / 25

Using a Priority Queue to Sort

PQ-Sort(A[0..n − 1])
1. initialize PQ to an empty priority queue
2. for i ← 0 to n − 1 do
3. PQ.insert(A[i])
4. for i ← n − 1 down to 0 do
5. A[i]← PQ.deleteMax()

Note: Run-time depends on how we implement the priority queue.
Sometimes written as: O(initialization + n · insert + n · deleteMax)

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 6 / 25

Realizations of Priority Queues
Realization 1: unsorted arrays

insert: O(1)
deleteMax: O(n)

Note: We assume dynamic arrays, i. e., expand by doubling as needed.
(Amortized over all insertions this takes O(1) extra time.)

Using unsorted linked lists is identical.
PQ-sort with this realization yields selection sort.

Realization 2: sorted arrays

insert: O(n)
deleteMax: O(1)

Using sorted linked lists is identical.
PQ-sort with this realization yields insertion sort.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 7 / 25

Outline

1 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Operations in Binary Heaps
PQ-sort and Heapsort
Towards the Selection Problem

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021

Realization 3: Heaps

A (binary) heap is a certain type of binary tree.

You should know:
A binary tree is either

I empty, or
I consists of three parts:

a node and two binary trees (left subtree and right subtree).
Terminology: root, leaf, parent, child, level, sibling, ancestor,
descendant, etc.
Any binary tree with n nodes has height at least
log(n + 1)− 1 ∈ Ω(log n).

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 8 / 25

Example Heap

50

29

27

23 26

15

34

8 10

(In our examples we only show the priorities, and we show them directly in
the node. A more accurate picture would be priority = 50, <other info>

)

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 9 / 25

Heaps – Definition

A heap is a binary tree with the following two properties:

1 Structural Property: All the levels of a heap are completely filled,
except (possibly) for the last level. The filled items in the last level
are left-justified .

2 Heap-order Property: For any node i , the key of the parent of i is
larger than or equal to key of i .

The full name for this is max-oriented binary heap.

Lemma: The height of a heap with n nodes is Θ(log n).

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 10 / 25

Storing Heaps in Arrays
Heaps should not be stored as binary trees!

Let H be a heap of n items and let A be an array of size n. Store root in
A[0] and continue with elements level-by-level from top to bottom, in each
level left-to-right.

50A[0]

29A[1]

27A[3]

23A[7] 26 A[8]

15 A[4]

34 A[2]

8A[5] 10 A[6]

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 11 / 25

Heaps in Arrays – Navigation

It is easy to navigate the heap using this array representation:
the root node is at index 0
(We use “node” and “index” interchangeably in this implementation.)
the last node is n − 1 (where n is the size)
the left child of node i (if it exists) is node 2i + 1
the right child of node i (if it exists) is node 2i + 2
the parent of node i (if it exists) is node b i−1

2 c
these nodes exist if the index falls in the range {0, . . . , n−1}

We should hide implementation details using helper-functions!
functions root(), last(), parent(i), etc.

Some of these helper-functions need to know n (but we omit this in the
code for simplicity).

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 12 / 25

Outline

1 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Operations in Binary Heaps
PQ-sort and Heapsort
Towards the Selection Problem

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021

Insert in Heaps

Place the new key at the first free leaf
The heap-order property might be violated: perform a fix-up:

fix-up(A, i)
i : an index corresponding to a node of the heap
1. while parent(i) exists and A[parent(i)].key < A[i].key do
2. swap A[i] and A[parent(i)]
3. i ← parent(i)

The new item “bubbles up” until it reaches its correct place in the heap.

Time: O(height of heap) = O(log n).

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 13 / 25

fix-up example

50

29

27

23 26

15

34

8 10

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 14 / 25

deleteMax in Heaps

The maximum item of a heap is just the root node.
We replace root by the last leaf (last leaf is taken out).
The heap-order property might be violated: perform a fix-down:

fix-down(A, i , n← A.size)
A: an array that stores a heap of size n
i: an index corresponding to a node of the heap
1. while i is not a leaf do
2. j ← left child of i // Find the child with the larger key
3. if (i has right child and A[right child of i].key > A[j].key)
4. j ← right child of i
5. if A[i].key ≥ A[j].key break
6. swap A[j] and A[i]
7. i ← j

Time: O(height of heap) = O(log n).

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 15 / 25

deleteMax example

50

48

27

23 26

29

15

34

8 10

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 16 / 25

Priority Queue Realization Using Heaps
Store items in array A and globally keep track of size

insert(x)
1. increase size
2. `← last()
3. A[`]← x
4. fix-up(A, `)

deleteMax()
1. `← last()
2. swap A[root()] and A[`]
3. decrease size
4. fix-down(A, root(), size)
5. return A[`]

insert and deleteMax: O(log n) time

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 17 / 25

Outline

1 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Operations in Binary Heaps
PQ-sort and Heapsort
Towards the Selection Problem

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021

Sorting using heaps
Recall: Any priority queue can be used to sort in time

O(initialization + n · insert + n · deleteMax)

Using the binary-heaps implementation of PQs, we obtain:

PQsortWithHeaps(A)
1. initialize H to an empty heap
2. for i ← 0 to n − 1 do
3. H.insert(A[i])
4. for i ← n − 1 down to 0 do
5. A[i]← H.deleteMax()

both operations run in O(log n) time for heaps
 PQ-Sort using heaps takes O(n log n) time.

Can improve this with two simple tricks → Heapsort
1 Heaps can be built faster if we know all input in advance.
2 Can use the same array for input and heap. O(1) auxiliary space!

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 18 / 25

Building Heaps with Fix-up
Problem: Given n items all at once (in A[0 · · · n − 1]) build a heap
containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

simpleHeapBuilding(A)
A: an array
1. initialize H as an empty heap
2. for i ← 0 to A.size()− 1 do
3. H.insert(A[i])

This corresponds to doing fix-ups
Worst-case running time: Θ(n log n).

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 19 / 25

Building Heaps with Fix-down
Problem: Given n items all at once (in A[0 · · · n − 1]) build a heap
containing all of them.

Solution 2: Using fix-downs instead:

heapify(A)
A: an array
1. n← A.size()
2. for i ← parent(last()) downto root() do
3. fix-down(A, i , n)

A careful analysis yields a worst-case complexity of Θ(n).
A heap can be built in linear time.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 20 / 25

heapify example

10

80

30

40 70

20

50

60 10

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 21 / 25

HeapSort
Idea: PQ-sort with heaps.
O(1) auxiliary space: Use same input-array A for storing heap.

HeapSort(A, n)
1. // heapify
2. n← A.size()
3. for i ← parent(last()) downto 0 do
4. fix-down(A, i , n)

5. // repeatedly find maximum
6. while n > 1
7. // ‘delete’ maximum by moving to end and decreasing n
8. swap items at A[root()] and A[last()]
9. decrease n
10. fix-down(A, root(), n)

The for-loop takes Θ(n) time and the while-loop takes O(n log n) time.
Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 22 / 25

Heapsort example

Continue with the example from heapify:

80

70

40

10 30

20

60

50 10

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 23 / 25

Heap summary

Binary heap: A binary tree that satisfies structural property and
heap-order property.
Heaps are one possible realization of ADT PriorityQueue:

I insert takes time O(log n)
I deleteMax takes time O(log n)
I Also supports findMax in time O(1)

A binary heap can be built in linear time.
PQ-sort with binary heaps leads to a sorting algorithm with O(n log n)
worst-case run-time (HeapSort)
We have seen here the max-oriented version of heaps (the maximum
priority is at the root).
There exists a symmetric min-oriented version that supports insert
and deleteMin with the same run-times.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 24 / 25

Outline

1 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Operations in Binary Heaps
PQ-sort and Heapsort
Towards the Selection Problem

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021

Finding the largest items

Problem: Find the kth largest item in an array A of n distinct numbers.

Solution 1: Make k passes through the array, deleting the maximum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[n−k].
Complexity: Θ(n log n).

Solution 3: Scan the array and maintain the k largest numbers seen so
far in a min-heap
Complexity: Θ(n log k).

Solution 4: Create a max-heap with heapify(A). Call deleteMax(A) k
times.
Complexity: Θ(n + k log n).

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 2 Winter 2021 25 / 25

	Priority Queues
	Abstract Data Types
	Abstract Data Types
	Stack ADT
	Queue ADT

	ADT Priority Queue
	Priority Queue ADT
	Using a Priority Queue to Sort
	Realizations of Priority Queues

	Binary Heaps
	Realization 3: Heaps
	Example Heap
	Heaps – Definition
	Storing Heaps in Arrays
	Heaps in Arrays – Navigation

	Operations in Binary Heaps
	Insert in Heaps
	fix-up example
	deleteMax in Heaps
	deleteMax example
	Priority Queue Realization Using Heaps

	PQ-sort and Heapsort
	Sorting using heaps
	Building Heaps with Fix-up
	Building Heaps with Fix-down
	heapify example
	HeapSort
	Heapsort example
	Heap summary

	Towards the Selection Problem
	Finding the largest items

