CS 240 – Data Structures and Data Management

Module 4: Dictionaries - Enriched

T. Biedl É. Schost O. Veksler Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-02-10 12:28

Biedl, Schost, Veksler (SCS, UW)

CS240 - Module 4

Winter 2021 1 / 13

Outline

Dictionaries and Balanced Search Trees

Scapegoat Trees

Outline

Dictionaries and Balanced Search Trees

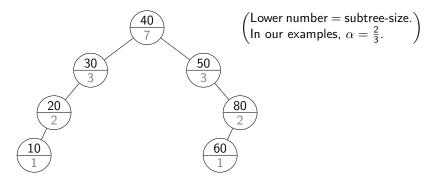
Scapegoat Trees

- Can we have balanced binary search trees *without* rotations? (A later application will need such a tree.)
- This sounds impossible—we must sometimes restructure the tree.
- Idea: Rather than doing a small local change, occasionally do a large (near-global) rebuilt.
- With the right setup, this will lead to $O(\log n)$ height and $O(\log n)$ amortized time for all operations.

Scapegoat trees

Fix a constant α with $\frac{1}{2} < \alpha < 1$. A scapegoat tree is a binary search tree where any node v with a parent satisfies

 $v.size \leq \alpha \cdot v.parent.size.$



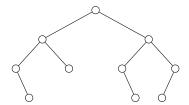
- v.size needed during updates \rightsquigarrow must be stored
- Any subtree is a constant fraction smaller \rightsquigarrow height $O(\log n)$.

Biedl, Schost, Veksler (SCS, UW)

Scapegoat tree operations

- search: As for a binary search tree. $O(height) = O(\log n)$.
- For *insert* and *delete*, occasionally restructure a subtree into a **perfectly balanced tree**:

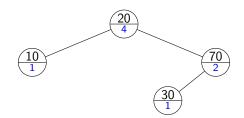
 $|size(z.left) - size(z.right)| \le 1$ for all nodes z.



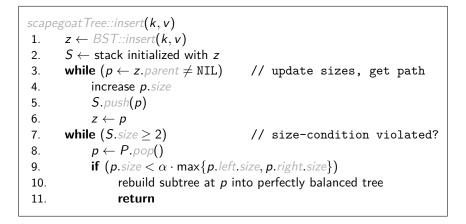
• Do this at the *highest* node where the size-condition of scapegoat trees is violated

Scapegoat Tree Insertion Example

Example:



Scapegoat tree insertion



- Rebuilding at p (line 10) can be done in O(p.size) time (exercise).
- This restores scapegoat tree (we rebuild at the highest violation).

Biedl, Schost, Veksler (SCS, UW)

Detour: Amortized analysis

As for dynamic arrays and lazy deletion, we have the following pattern:

- usually the operation is fast,
- the occasional operation is quite slow.

The worst-case run-time bound here would not reflect that overall this works quite well.

Instead, try to find an **amortized run-time bound**: A bound that holds if we add the bounds up over all operations.

$$\sum_{i=1}^{k} T^{ ext{actual}}(\mathcal{O}_i) \leq \sum_{i=1}^{k} T^{ ext{amort}}(\mathcal{O}_i).$$

(where $\mathcal{O}_1, \ldots, \mathcal{O}_k$ is any feasible sequence of operations, $\mathcal{T}^{\text{actual}}(\cdot)$ is the actual run-time, and $\mathcal{T}^{\text{amort}}(\cdot)$ is the amortized run-time (or an upper bound for it).

Detour: Amortized analysis

For dynamic arrays, some ad-hoc methods work.

Direct argument:

- n/2 fast inserts takes $\Theta(1)$ time each.
- Then one slow insert takes $\Theta(n)$.
- Averaging out therefore $\Theta(1)$ per operation.
- This is doing math with asymptotic notation dangerous.
- Explicitly define $T^{amort}(\cdot)$ and verify.
 - Set time units such that $T^{\text{actual}}(\text{insert}) \leq 1$ and $T^{\text{actual}}(\text{resize}) \leq n$.
 - Define $T^{\text{amort}}(\text{insert}) = 3$ and $T^{\text{amort}}(\text{resize}) = 0$.

Verify
$$\sum_{i=1}^{k} T^{\text{actual}}(\mathcal{O}_i) \leq$$

 $\leq \sum_{i=1}^{k} T^{\text{amort}}(\mathcal{O}_i).$

Biedl, Schost, Veksler (SCS, UW)

Potential function method

Usually we need more systematic methods.

- **Potential function:** A function $\Phi(\cdot)$ that depends on the current status of the data structure.
 - E.g.: $\Phi(i) = \max\{0, 2 \cdot size capacity\}$ for dynamic arrays.
 - "*i*" = operations $\mathcal{O}_1, \ldots, \mathcal{O}_i$ have been executed.
- Potential function must satisfy: $\Phi(0) = 0$, $\Phi(i) \ge 0$ for all *i*.
 - Can verify this for dynamic-array function above.
- Define $T^{\text{amort}}(\mathcal{O}_i) = T^{\text{actual}}(\mathcal{O}_i) + \Phi(i) \Phi(i-1)$
 - ► Often we just write $T^{\mathrm{amort}}(\mathcal{O}) = T^{\mathrm{actual}}(\mathcal{O}) + \Phi^{\mathrm{after}} \Phi^{\mathrm{before}}$

Lemma: This satisfies $\sum_{i} T^{\text{actual}}(\mathcal{O}_i) \leq \sum_{i} T^{\text{amort}}(\mathcal{O}_i)$.

Biedl, Schost, Veksler (SCS, UW)

Example: Dynamic arrays $40|20| \longrightarrow 40|20|90| \longrightarrow 40|20|90|60| \xrightarrow{\text{insert}} 40|20|90|60| \longrightarrow 40|20|90|60|$

Potential function Φ(i) = max{0, 2 · size - capacity}

• As before set time units such that $T^{
m actual}(\textit{insert}) \leq 1$ and $T^{
m actual}(\textit{resize}) \leq n$.

• insert increases size, does not change capacity

$$\Rightarrow \Delta \Phi = \Phi^{after} - \Phi^{before} \le 2 - 0 = 2$$

$$T^{amort}(insert) \le 1 + 2 - 0 = 3 \in O(1)$$

• rebuild happens only if size = capacity = n $\Rightarrow \Phi^{\text{before}} = 2n - n = n.$ $\Rightarrow \Phi^{\text{after}} = 2n - 2n = 0$ since new capacity is 2n. $T^{\text{amort}}(\text{insert}) \le n + 0 - n = 0 \in O(1)$

Result: The amortized run-time of dynamic arrays is O(1).

Biedl, Schost, Veksler (SCS, UW)

CS240 - Module 4

Winter 2021

Potential function method

How to find a suitable potential function? (No recipe, but some guidelines.)

• Study the expensive operation: What gets smaller?

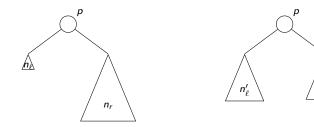
060

- Dynamic arrays: *rebuild increases* capacity.
 We want the potential function to get smaller.
 So potential function should have term "*-capacity*.
- Study condition $\Phi(\cdot) \ge 0$ and $\Phi(0) = 0$.
 - ▶ Dynamic arrays: Usually have capacity ≤ 2 · size. So usually 2 · size - capactiy ≥ 0,
 - We added a max $\{0, ...\}$ term so that also $\Phi(0) = 0$.
- Compute the amortized time and see whether you get good bounds.
- Rinse, lather, repeat.

Biedl, Schost, Veksler (SCS, UW)

Amortized analysis of scapegoat trees

• Expensive operation: Rebuild subtree at *p*.



• Claim: If we rebuild at p, then $|n_r - n_\ell| \ge (2\alpha - 1)n_p$. Proof:

• Idea: Potential function should involve $\sum_{v} |v.left.size - v.right.size|$.

Biedl, Schost, Veksler (SCS, UW)

CS240 - Module 4

n',

Amortized analysis of scapegoat trees

- Use $\Phi(i) = c \cdot \sum_{v} \max\{|v.left v.right| 1, 0\}$ for some constant c.
- insert and delete increases contribution at ancestors by at most 1 and does not increase other contributions.

$$T^{amort}(insert) = T^{actual}(insert) + \Phi_{after} - \Phi_{before}$$

 $\leq \log n + c \# \{ancestors\} \in O(\log n)$

• rebuild decreases contribution at p by $(2\alpha - 1)n_p$ and does not increase other contributions.

$$T^{amort}(rebuild) = T^{actual}(rebuild) + \Phi_{after} - \Phi_{before}$$

 $\leq n_p + c(-(2\alpha - 1)n_p)$

With $c = 1/(2\alpha - 1)$, this is at most 0 and *rebuild* is free.

Result: All operations have amortized run-time in $O(\log n)$.

Biedl, Schost, Veksler (SCS, UW)