
CS 240 – Data Structures and Data Management

Module 5: Other Dictionary Implementations -
Enriched

T. Biedl É. Schost O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-02-10 12:28

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 1 / 21

Outline

Expected height of a BST
Treaps
Optimal static binary search trees
MTF-heuristic in a BST
Splay Trees

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021

Expected height of BSTs
Assume we randomly choose a permutation of {0, . . . , n − 1} and build a
binary search tree in this order:

0

1

2

{0, 1, 2}

0

2

1

{0, 2, 1}

1

0 2

{1, 0, 2}
{1, 2, 0}

2

0

1

{2, 0, 1}

2

1

0

{2, 1, 0}

Theorem: The expected height of the binary search tree is O(log n).
Proof:

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 2 / 21

Outline

Expected height of a BST
Treaps
Optimal static binary search trees
MTF-heuristic in a BST
Splay Trees

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021

Treaps

Goal: Build a binary search tree that acts as if it had been build in
randomly picked insertion order.

Idea: Use binary search tree, but store a priority with each node.

Priorities are a permutation of
{0, . . . , n−1}.
Permutation has been picked randomly
All permutations should be equally
likely.
Priorities are decreasing when going
downwards (similar to a heap).

10
6

4
4

6
1

14
5

13
2

18
3

16
0

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 3 / 21

Treaps

10
6

4
4

6
1

14
5

13
2

18
3

16
0

P : •
0

•
1

•
2

•
3

•
4

•
5

•
6

We will also need an array P where P[i] stores node with priority i .
We call this a treap (= tree + heap).

Theorem: The expected height of a treap is O(log n).
Proof: Root-item has priority n − 1. This is picked randomly, so proof for
expected height of BST applies.
Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 4 / 21

Treap Insertion
Consider adding a new KVP. What priority should it get?

We need a random permutation of {0, . . . , n − 1}
I Currently we had a random permutation of {0, . . . , n − 2}.

Recall shuffle from long ago:
shuffle(A)
A: array of size n stores 〈0, ...n−1〉
1. for i ← 1 to n − 1 do
2. swap(A[i],A[random(i + 1)])

In ith round,
I have random permutation of {0, . . . , i − 1}
I build random permutation of {0, . . . , i} in O(1) time
I key insight: swap with randomly chosen item

We can do the same by randomly picking priority p for new item.
The item that had priority p previously now has priority n − 1.
If this violates the heap-property, then rotate to fix it.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 5 / 21

Treap Insertions Example

Example: treap::insert(17)
Randomly pick priority 5 ∈ {0, . . . , 7}

10
6

4
4

6
1

14
5

13
2

18
3

16
0

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 6 / 21

Treap Insertion Code
We assume that the treap stores array where P[i] = node with priority i .

treap::insert(k, v)
1. n← P.size // current size
2. z ← BST::insert(k, v); n++
3. p ← random(n)
4. if p < n − 1 do
5. z ′ ← P[p], z ′.priority← n − 1,P[n − 1]← z ′

6. fixUpWithRotations(z ′)
7. z .priority← p; P[p]← z
8. fixUpWithRotations(z)

treap::fixUpWithRotations(z)
1. while (y ← z .parent is not NIL and z .priority > y .priority) do
2. ifz is the left child of y do rotate-right(y)
3. else rotate-left(y)

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 7 / 21

Treaps summary

Randomized binary search tree, so expected height is O(log n)
Achieves O(log n) expected time for search and insert
delete can be handled similar (but even more exchanges)

Large space overhead (parent-pointers, priorities, P)
Not particularly efficient in practice
(except when priorities have meaning later)
There are ways to avoid some of the space overhead, but in general
randomized binary search trees are rarely used.
We will soon see a randomization that works better (but is not a
binary search tree)

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 8 / 21

Outline

Expected height of a BST
Treaps
Optimal static binary search trees
MTF-heuristic in a BST
Splay Trees

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021

Optimal static binary search trees

Can we find the optimal static order for a binary search tree?

ki A B C D E
P(ki) 5

26
8
26

1
26

10
26

2
26

D
10

B
8

A
5

C
1

E
2

1 · 10
26 + 2 · 8

26 + 2 · 2
26 + 3 · 5

26 + 3 · 1
26 = 48

26

Access-cost is now
∑

k P(k) · (1 + depth of k)

since we use (1 + depth of k) comparisons to search for key k.

Natural greedy-algorithm:
I Put item with highest access-probability at the root.
I Split keys into left/right as dictated by the order-property.
I Recurse in the subtree.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 9 / 21

Optimal static binary search trees
The greedy-algorithm does not give the optimum!

ki A B C D E
P(ki) 5

26
8
26

1
26

10
26

2
26

B
8

A
5

D
10

C
1

E
2

1 · 8
26 + 2 · 5

26 + 2 · 10
26 + 3 · 1

26 + 3 · 2
26 = 47

26

To find the optimum, use “dynamic programming”:
I Effectively try all possible binary search trees
I This would take exponential time if done in a straightfoward way.
I Key idea: We can store and re-use solutions of subproblems to achieve

polynomial run-time
Many more details in cs341 (though not perhaps for this problem)

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 10 / 21

Outline

Expected height of a BST
Treaps
Optimal static binary search trees
MTF-heuristic in a BST
Splay Trees

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021

MTF-heuristic for binary search trees
What does ‘move-to-front’ mean in a binary search tree?

Front = the place that is easiest to access
In a binary search tree, that’s the root.

⇒ After every access, bring item to the root of BST

But: order-property must be maintained!
⇒ Use rotations!

(This should remind you of treaps.)

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 11 / 21

MTF-heuristic for binary search trees

Example: BST-MTF::search(18)

30

20

10

5 15

12 17

16 19

18

25

50

40

35

60

55

52 57

65

18

10

5 15

12 17

16

30

20

19 25

50

40

35

60

55

52 57

65

This should work well, but we can do better by moving two level at a time.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 12 / 21

Outline

Expected height of a BST
Treaps
Optimal static binary search trees
MTF-heuristic in a BST
Splay Trees

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021

Splay trees

Splay tree overview:

Binary search tree
No extra information (such as height, balance, size) needed at nodes
After search/insert, bring accessed node to the root with rotations
Move node up two layers at a time (except when near root)

I Use zig-zig-rotation or zig-zag-rotation to move up two levels.

Goal: This has amortized run-time O(log n).

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 13 / 21

Zig-zag Rotation = Double Rotation

Let x be the node that we want to move up.
Let p and g be its parent and grandparent.
If they are in zig-zag formation, apply a double-rotation.

g

A

p

x

B C

D

x

g

A B

p

C D

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 14 / 21

Zig-zig Rotation

If they are in zig-zig formation, apply a new kind of rotation.

g

A

p

B

x

C D

x

p

g

A B

C

D

First, a left rotation at g . Second, a left rotation at p.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 15 / 21

Compare to doing two single rotations

g

A

p

B

x

C D

x

g

A

p

B C

D

Both operations bring x two levels higher.
But using the zig-zig rotation allows to do amortized analysis.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 16 / 21

Splay Tree Operations

SplayTree::insert(k, v)
1. x ← BST::insert(k, v)
2. while (x is not the root)
3. p ← x .parent
4. if (x is the left child of p)
5. if (p is the root)
6. rotate-right(p)
7. else g ← p.parent
8. case
9. g

p

x

: ; // Zig-zig rotation
rotate-right(g)
rotate-right(p)

10. g

p

x

: : // Zig-zag rotation
rotate-right(p)
rotate-left(g)

11. else ... // symmetric case, x is right child

search is exactly the same, except use BST::search.
Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 17 / 21

Splay Tree Insert
Example: SplayTree::search(18)

30

20

10

5 15

12 17

16 19

18

25

50

40

35

60

55

52 57

65

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 18 / 21

Zig-zig rotations vs. single rotations

Compare the resulting trees:

With zig-zig rotations:

18

15

10

5 12

17

16

20

19 30

25 50

40

35

60

55

52 57

65

With single rotations:

18

10

5 15

12 17

16

30

20

19 25

50

40

35

60

55

52 57

65

This is not more balanced, why do we apply zig-zig-rotations?

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 19 / 21

Zig-zig rotations vs. single rotations
Compare the result for a different initial tree:

With zig-zig rotations:

70

60

50

40

30

20

10

With single rotations:

70

60

50

40

30

20

10
Splay tree intuition:

For any node on search-path, the depth (roughly) halves
For all nodes, the depth increases by at most 2

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 20 / 21

Splay tree summary

Theorem: In a splay tree, all operations take O(log n) amortized time.
(The formal proof does not follow the intuition and uses a potential function.)

In summary:
Needs no extra information (such as height or size) needed at nodes
Our pseudo-code assumed parent-references; this can be avoided by
temporarily storing search-path.
According to experiments this is the most efficient binary search tree.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 5 Winter 2021 21 / 21

	Expected height of a BST
	Expected height of BSTs

	Treaps
	Treaps
	Treaps
	Treap Insertion
	Treap Insertions Example
	Treap Insertion Code
	Treaps summary

	Optimal static binary search trees
	Optimal static binary search trees
	Optimal static binary search trees

	MTF-heuristic in a BST
	MTF-heuristic for binary search trees
	MTF-heuristic for binary search trees

	Splay Trees
	Splay trees
	Zig-zag Rotation = Double Rotation
	Zig-zig Rotation
	Compare to doing two single rotations
	Splay Tree Operations
	Splay Tree Insert
	Zig-zig rotations vs. single rotations
	Zig-zig rotations vs. single rotations
	Splay tree summary

