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Expected height of BSTs
Assume we randomly choose a permutation of {0, . . . , n − 1} and build a
binary search tree in this order:
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Theorem: The expected height of the binary search tree is O(log n).
Proof:
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Treaps

Goal: Build a binary search tree that acts as if it had been build in
randomly picked insertion order.

Idea: Use binary search tree, but store a priority with each node.

Priorities are a permutation of
{0, . . . , n−1}.
Permutation has been picked randomly
All permutations should be equally
likely.
Priorities are decreasing when going
downwards (similar to a heap).
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Treaps
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We will also need an array P where P[i ] stores node with priority i .
We call this a treap (= tree + heap).

Theorem: The expected height of a treap is O(log n).
Proof: Root-item has priority n − 1. This is picked randomly, so proof for
expected height of BST applies.
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Treap Insertion
Consider adding a new KVP. What priority should it get?

We need a random permutation of {0, . . . , n − 1}
I Currently we had a random permutation of {0, . . . , n − 2}.

Recall shuffle from long ago:
shuffle(A)
A: array of size n stores 〈0, ...n−1〉
1. for i ← 1 to n − 1 do
2. swap(A[i ],A[random(i + 1)] )

In ith round,
I have random permutation of {0, . . . , i − 1}
I build random permutation of {0, . . . , i} in O(1) time
I key insight: swap with randomly chosen item

We can do the same by randomly picking priority p for new item.
The item that had priority p previously now has priority n − 1.
If this violates the heap-property, then rotate to fix it.
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Treap Insertions Example

Example: treap::insert(17)
Randomly pick priority 5 ∈ {0, . . . , 7}
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Treap Insertion Code
We assume that the treap stores array where P[i ] = node with priority i .

treap::insert(k, v)
1. n← P.size // current size
2. z ← BST::insert(k, v); n++
3. p ← random(n)
4. if p < n − 1 do
5. z ′ ← P[p], z ′.priority← n − 1,P[n − 1]← z ′

6. fixUpWithRotations(z ′)
7. z .priority← p; P[p]← z
8. fixUpWithRotations(z)

treap::fixUpWithRotations(z)
1. while (y ← z .parent is not NIL and z .priority > y .priority) do
2. ifz is the left child of y do rotate-right(y)
3. else rotate-left(y)
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Treaps summary

Randomized binary search tree, so expected height is O(log n)
Achieves O(log n) expected time for search and insert
delete can be handled similar (but even more exchanges)

Large space overhead (parent-pointers, priorities, P)
Not particularly efficient in practice
(except when priorities have meaning  later)
There are ways to avoid some of the space overhead, but in general
randomized binary search trees are rarely used.
We will soon see a randomization that works better (but is not a
binary search tree)
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Optimal static binary search trees

Can we find the optimal static order for a binary search tree?
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Access-cost is now
∑

k P(k) · (1 + depth of k)

since we use (1 + depth of k) comparisons to search for key k.

Natural greedy-algorithm:
I Put item with highest access-probability at the root.
I Split keys into left/right as dictated by the order-property.
I Recurse in the subtree.
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Optimal static binary search trees
The greedy-algorithm does not give the optimum!
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To find the optimum, use “dynamic programming”:
I Effectively try all possible binary search trees
I This would take exponential time if done in a straightfoward way.
I Key idea: We can store and re-use solutions of subproblems to achieve

polynomial run-time
Many more details in cs341 (though not perhaps for this problem)
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MTF-heuristic for binary search trees
What does ‘move-to-front’ mean in a binary search tree?

Front = the place that is easiest to access
In a binary search tree, that’s the root.

⇒ After every access, bring item to the root of BST

But: order-property must be maintained!
⇒ Use rotations!

(This should remind you of treaps.)
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MTF-heuristic for binary search trees

Example: BST-MTF::search(18)
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This should work well, but we can do better by moving two level at a time.
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Splay trees

Splay tree overview:

Binary search tree
No extra information (such as height, balance, size) needed at nodes
After search/insert, bring accessed node to the root with rotations
Move node up two layers at a time (except when near root)

I Use zig-zig-rotation or zig-zag-rotation to move up two levels.

Goal: This has amortized run-time O(log n).
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Zig-zag Rotation = Double Rotation

Let x be the node that we want to move up.
Let p and g be its parent and grandparent.
If they are in zig-zag formation, apply a double-rotation.
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Zig-zig Rotation

If they are in zig-zig formation, apply a new kind of rotation.
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First, a left rotation at g . Second, a left rotation at p.
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Compare to doing two single rotations
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Both operations bring x two levels higher.
But using the zig-zig rotation allows to do amortized analysis.
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Splay Tree Operations

SplayTree::insert(k, v)
1. x ← BST::insert(k, v)
2. while (x is not the root)
3. p ← x .parent
4. if (x is the left child of p)
5. if (p is the root)
6. rotate-right(p)
7. else g ← p.parent
8. case
9. g

p

x

: ; // Zig-zig rotation
rotate-right(g)
rotate-right(p)

10. g

p

x

: : // Zig-zag rotation
rotate-right(p)
rotate-left(g)

11. else ... // symmetric case, x is right child

search is exactly the same, except use BST::search.
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Splay Tree Insert
Example: SplayTree::search(18)
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Zig-zig rotations vs. single rotations

Compare the resulting trees:

With zig-zig rotations:
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This is not more balanced, why do we apply zig-zig-rotations?
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Zig-zig rotations vs. single rotations
Compare the result for a different initial tree:

With zig-zig rotations:
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Splay tree intuition:

For any node on search-path, the depth (roughly) halves
For all nodes, the depth increases by at most 2
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Splay tree summary

Theorem: In a splay tree, all operations take O(log n) amortized time.
(The formal proof does not follow the intuition and uses a potential function.)

In summary:
Needs no extra information (such as height or size) needed at nodes
Our pseudo-code assumed parent-references; this can be avoided by
temporarily storing search-path.
According to experiments this is the most efficient binary search tree.
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