CS 240 – Data Structures and Data Management

Module 6E: Dictionaries for special keys - Enriched

T. Biedl É. Schost O. Veksler Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-02-10 12:29

Biedl, Schost, Veksler (SCS, UW)

CS240 - Module 6E

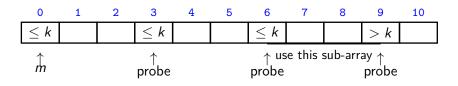
Winter 2021 1 / 6

Improving Interpolation Search

- Had: Average-case run-time of *interpolation-search* is $O(\log \log n)$.
- This is very complicated to prove!
 - Study error, i.e., distance between index of k and where we probed.
 Argue that error is in O(√n) in first round.
 Argue that error is in O(½n) after i rounds.
 Study the martingale formed by the errors in the rounds.
 Argue that its expected length is O(log log n).
- Instead: Define a variant of interpolatation-search
 - Better worst-case run-time.
 - Easier to analyze.
- Idea: Force the sub-array to have size \sqrt{n}
- To do so, search for suitable sub-array with probes.
- Crucial question: how many probes are needed?

Biedl, Schost, Veksler (SCS, UW)

Improving Interpolation Search



- First compare at *m* as before.
- If $A[m] \leq k$, probe rightward.
- Probes always go $\lfloor \sqrt{N} \rfloor$ indices rightward (where $N = r - \ell$ is the size of the sub-array where k could be)
- Continue probing until > k or out-of-bounds

• Observe: # probes
$$\leq \frac{N}{\lfloor \sqrt{N} \rfloor} \leq \sqrt{N} + 1.$$

Biedl, Schost, Veksler (SCS, UW)

Improving Interpolation Search

Interpolation-search-modified(A, n, k)
A: sorted array of size n, k: key
1. if
$$(k < A[0] \text{ or } k > A[n-1])$$
 return "not found"
2. if $(k = A[n-1])$ return "found at index $n-1$ "
3. $\ell \leftarrow 0, r \leftarrow n-1$ // have $A[\ell] \le k < A[r]$
4. while $(N \leftarrow (r - \ell) \ge 2)$
5. $m \leftarrow \ell + \frac{k - A[\ell]}{A[r] - A[\ell]} \cdot (r - \ell)$
6. if $(A[m] \le k)$ // probe rightward
7. $\ell \leftarrow m, m_r \leftarrow \min\{r, m + \lfloor \sqrt{N} \rfloor\}$
8. while $(m_r < r \text{ and } A[m_r] < k)$
9. $\ell \leftarrow m_r, m_r \leftarrow \min\{r, m + \lfloor \sqrt{N} \rfloor\}$
10. $r \leftarrow m_r$ // found suitable sub-array
11. else
12. \vdots // symmetrically probe leftward
13. if $(k = A[\ell])$ return "found at index ℓ "
14. else return "not found"

Analysis of interpolation-search-improved

- $T(n) \leq T(\sqrt{n}) + O(\# \text{probes})$
- # probes $\leq \sqrt{n} + 1$.
- The worst-case run-time satisfies

$$T^{\mathrm{worst}}(n) \leq T^{\mathrm{worst}}(\sqrt{n}) + c \cdot (\sqrt{n} + 1)$$

• Show: $T^{\text{worst}}(n) \leq \frac{5}{4}c\sqrt{n}$ for $n \geq 16$

• Therefore worst-case run-time is $O(\sqrt{n})$.

Analysis of interpolation-search-improved

- What is the number of probes on average?
- Rephrase: If numbers are chosen uniformly at random, what is the expected number of probes?
- Can show: Expected number of probes is in O(1).
- The average-case run-time satisfies

$$T^{\mathrm{avg}}(n) \leq T^{\mathrm{avg}}(\sqrt{n}) + c$$

• Show: $T^{\operatorname{avg}}(n) \leq c \lceil \log \log n \rceil$ for $n \geq 4$.

• Therefore the average-case run-time is $O(\log \log n)$.