
CS 240 – Data Structures and Data Management

Module 7: Dictionaries via Hashing

T. Biedl É. Schost O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-03-01 13:06

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 1 / 24

Outline

1 Dictionaries via Hashing
Hashing Introduction
Separate Chaining
Probe Sequences
Cuckoo hashing
Hash Function Strategies

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021

Outline

1 Dictionaries via Hashing
Hashing Introduction
Separate Chaining
Probe Sequences
Cuckoo hashing
Hash Function Strategies

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021

Direct Addressing
Special situation: For a known M ∈ N, every key k is an integer with
0 ≤ k < M.

We can then implement a dictionary easily: Use an array A of size M that
stores (k, v) via A[k]← v .

0

1

dog2

3

4

5

cat6

7

pig8

search(k): Check whether A[k] is NIL

insert(k, v): A[k]← v
delete(k): A[k]← NIL

Each operation is Θ(1).
Total space is Θ(M).

What sorting algorithm does this remind you of?

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 2 / 24

Hashing
Two disadvantages of direct addressing:

It cannot be used if the keys are not integers.
It wastes space if M is unknown or n� M.

Hashing idea: Map (arbitrary) keys to integers in range {0, . . . ,M−1}
and then use direct addressing.

Details:
Assumption: We know that all keys come from some universe U.
(Typically U = N.)
We design a hash function h : U → {0, 1, . . . ,M − 1}.
(Commonly used: h(k) = k mod M. We will see other choices later.)
Store dictionary in hash table, i.e., an array T of size M.
An item with key k should ideally be stored in slot h(k), i.e., at
T [h(k)].

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 3 / 24

Hashing example
U = N, M = 11, h(k) = k mod 11.
The hash table stores keys 7, 13, 43, 45, 49, 92. (Values are not shown).

0

451

132

3

924

495

6

77

8

9

4310

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 4 / 24

Collisions
Generally hash function h is not injective, so many keys can map to
the same integer.

I For example, h(46) = 2 = h(13) if h(k) = k mod 11.
We get collisions: we want to insert (k, v) into the table,
but T [h(k)] is already occupied.
There are many strategies to resolve collisions:

multiple items at location
(Chaining)

alternate slots in array
(Open addressing)

many alternate slots
(Probe sequence)

Linear Probing . . . Double Hashing

one alternate slot
(Cuckoo Hashing)

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 5 / 24

Outline

1 Dictionaries via Hashing
Hashing Introduction
Separate Chaining
Probe Sequences
Cuckoo hashing
Hash Function Strategies

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021

Separate Chaining

Simplest collision-resolution strategy: Each slot stores a bucket containing
0 or more KVPs.

A bucket could be implemented by any dictionary realization (even
another hash table!).
The simplest approach is to use unsorted linked lists for buckets.
This is called collision resolution by separate chaining.

search(k): Look for key k in the list at T [h(k)].
Apply MTF-heuristic!
insert(k, v): Add (k, v) to the front of the list at T [h(k)].
delete(k): Perform a search, then delete from the linked list.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 6 / 24

Chaining example
M = 11, h(k) = k mod 11

0

1 45
2 13
3

4 92
5 49
6

7 7
8

9

10 43

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 7 / 24

Complexity of chaining

Run-times: insert takes time Θ(1).
search and delete have run-time Θ

(
1 + size of bucket T [h(k)]

)
.

The average bucket-size is n
M =: α.

(α is also called the load factor.)
However, this does not imply that the average-case cost of search and
delete is Θ(1 + α).
(If all keys hash to the same slot, then the average bucket-size is still
α, but the operations take time Θ(n) on average.)
Uniform Hashing Assumption: Each hash value is equally likely.
(This depends on the input and how we choose the function later.)
Under this assumption, each key collides is expected to collide with
n−1
M other keys and the average-case cost of search and delete is
hence Θ(1 + α).

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 8 / 24

Load factor and re-hashing

For all collision resolution strategies, the run-time evaluation is done
in terms of the load factor α = n/M.
We keep the load factor small by rehashing when needed:

I Keep track of n and M throughout operations
I If α gets too large, create new (twice as big) hash-table, new

hash-function(s) and re-insert all items in the new table.
Rehashing costs Θ(M + n) but happens rarely enough that we can
ignore this term when amortizing over all operations.
We should also re-hash when α gets too small, so that M ∈ Θ(n)
throughout, and the space is always Θ(n).

Summary: If we maintain α ∈ Θ(1), then (under the uniform hashing
assumption) the average cost for hashing with chaining is O(1) and the
space is Θ(n).

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 9 / 24

Outline

1 Dictionaries via Hashing
Hashing Introduction
Separate Chaining
Probe Sequences
Cuckoo hashing
Hash Function Strategies

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021

Open addressing
Main idea: Avoid the links needed for chaining by permitting only one
item per slot, but allowing a key k to be in multiple slots.

search and insert follow a probe sequence of possible locations for key k:
〈h(k, 0), h(k, 1), h(k, 2), . . .〉 until an empty spot is found.

delete becomes problematic:
Cannot leave an empty spot behind; the next search might otherwise
not go far enough.
Idea 1: Move later items in the probe sequence forward.
Idea 2: lazy deletion: Mark spot as deleted (rather than NIL) and
continue searching past deleted spots.

Simplest method for open addressing: linear probing
h(k, i) = (h(k) + i) mod M, for some hash function h.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 10 / 24

Linear probing example

M = 11, h(k, i) = (h(k) + i) mod 11.

0

451

132

3

924

495

6

77

8

9

4310

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 11 / 24

Probe sequence operations

probe-sequence::insert(T , (k, v))
1. for (j = 0; j < M; j++)
2. if T [h(k, j)] is NIL or “deleted”
3. T [h(k, j)] = (k, v)
4. return “success”
5. return “failure to insert” // need to re-hash

probe-sequence-search(T , k)
1. for (j = 0; j < M; j++)
2. if T [h(k, j)] is NIL
3. return “item not found”
4. else if T [h(k, j)] has key k
5. return T [h(k, j)]
6. // ignore “deleted” and keep searching
7. return “item not found”

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 12 / 24

Independent hash functions

Some hashing methods require two hash functions h0, h1.
These hash functions should be independent in the sense that the
random variables P(h0(k) = i) and P(h1(k) = j) are independent.
Using two modular hash-functions may often lead to dependencies.
Better idea: Use multiplicative method for second hash function:
h(k) = bM(kA− bkAc)c,

I A is some floating-point number
I kA− bkAc computes fractional part of kA, which is in [0, 1)
I Multiply with M to get floating-point number in [0,M)
I Round down to get integer in {0, . . . ,M − 1}

Knuth suggests A = ϕ =
√
5−1
2 ≈ 0.618.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 13 / 24

Double Hashing

Assume we have two hash independent functions h0, h1.
Assume further that h1(k) 6= 0 and that h1(k) is relative prime with
the table-size M for all keys k.

I Choose M prime.
I Modify standard hash-functions to ensure h1(k) 6= 0

E.g. modified multiplication method: h(k) = 1 + b(M−1)(kA−bkAc)c

Double hashing: open addressing with probe sequence

h(k, i) = h0(k) + i · h1(k) mod M

search, insert, delete work just like for linear probing,
but with this different probe sequence.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 14 / 24

Double hashing example

M = 11, h0(k) = k mod 11, h1(k) = b10(ϕk − bϕkc)c+ 1

0

451

132

3

924

495

6

77

8

9

4310

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 15 / 24

Outline

1 Dictionaries via Hashing
Hashing Introduction
Separate Chaining
Probe Sequences
Cuckoo hashing
Hash Function Strategies

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021

Cuckoo hashing

We use two independent hash functions h0, h1 and two tables T0,T1.

Main idea: An item with key k can only be at T0[h0(k)] or T1[h1(k)].

search and delete then take constant time.
insert always initially puts a new item into T0[h0(k)]
If T0[h0(k)] is occupied: “kick out” the other item, which we then
attempt to re-insert into its alternate position T1[h1(k)]
This may lead to a loop of “kicking out”. We detect this by aborting
after too many attempts.
In case of failure: rehash with a larger M and new hash functions.

insert may be slow, but is expected to be constant time if the load factor
is small enough.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 16 / 24

Cuckoo hashing insertion

cuckoo::insert(k, v)
1. i ← 0
2. do at most 2n times:
3. if Ti [hi (k)] is NIL
4. Ti [hi (k)]← (k, v)
5. return “success”
6. swap((k, v),Ti [hi (k)])
7. i ← 1− i
8. return “failure to insert” // need to re-hash

After 2n iterations, there definitely was a loop in the “kicking out”
sequence (why?)

In practice, one would stop the iterations much earlier already.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 17 / 24

Cuckoo hashing example

M = 11, h0(k) = k mod 11, h1(k) = b11(ϕk − bϕkc)c

440

1

2

3

594

5

6

7

8

929

10

0

1

2

3

4

5

6

7

8

9

10

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 18 / 24

Cuckoo hashing discussions

The two hash-tables need not be of the same size.
Load factor α = n/(size of T0 + size of T1)
One can argue: If the load factor α is small enough then insertion has
O(1) expected run-time.
This crucially requires α < 1

2 .

There are many possible variations:
The two hash-tables could be combined into one.
Be more flexible when inserting: Always consider both possible
positions.
Use k > 2 allowed locations (i.e., k hash-functions).

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 19 / 24

Complexity of open addressing strategies
For any open addressing scheme, we must have α < 1 (why?).
Cuckoo hashing requires α < 1/2.

Average-case search insert search
probes ≤ (unsuccessful) (successful)

Linear Probing 1
(1− α)2

1
(1− α)2

1
1− α

Double Hashing 1
1− α

1
1− α

1
α

log
(1
1− α

)

Cuckoo Hashing 1
(worst-case)

α

(1− 2α)2
1

(worst-case)

Summary: All operations have O(1) average-case run-time if the
hash-function is uniform and α is kept sufficiently small.
But worst-case run-time is (usually) Θ(n).
Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 20 / 24

Outline

1 Dictionaries via Hashing
Hashing Introduction
Separate Chaining
Probe Sequences
Cuckoo hashing
Hash Function Strategies

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021

Choosing a good hash function

Goal: Satisfy uniform hashing assumption
(each hash-index is equally likely)
Proving this is usually impossible, as it requires knowledge of the
input distribution and the hash function distribution.
We can get good performance by choosing a hash-function that is

I unrelated to any possible patterns in the data, and
I depends on all parts of the key.

We saw two basic methods for integer keys:
I Modular method: h(k) = k mod M.

We should choose M to be a prime.
I Multiplicative method: h(k) = bM(kA− bkAc)c,

for some constant floating-point number A with 0 < A < 1.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 21 / 24

Universal Hashing
Every hash function must do badly for some sequences of inputs:

If the universe contains at least M · n keys, then there are n keys that
all hash to the same value Θ(n) run-time

Idea: Randomization!

Need: all keys are in {0, . . . , p − 1} for some prime p. Then use

h(k) =
(
(ak + b) mod p

)
mod M

where a, b are random numbers in {0, . . . p − 1}, a 6= 0
(M < p can be chosen arbitrary)
Can prove: For any (fixed) numbers x 6= y , the probability of a
collision using this random function h is at most 1

M .
Therefore the expected run-time is O(1) if α is kept small enough.

We have again shifted the performance from “bad input” to “bad luck”.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 22 / 24

Multi-dimensional Data
What if the keys are multi-dimensional, such as strings in Σ∗?

Standard approach is to flatten string w to integer f (w) ∈ N, e.g.

A · P · P · L · E → (65, 80, 80, 76, 69) (ASCII)
→ 65R4 + 80R3 + 80R2 + 76R1 + 68R0

(for some radix R, e.g. R = 255)

We combine this with a modular hash function: h(w) = f (w) mod M

To compute this in O(|w |) time without overflow, use Horner’s rule and
apply mod early. For exampe, h(APPLE) is

(((((((
65R+80

)
mod M

)
R+80

)
mod M

)
R+76

)
mod M

)
R+69

)
mod M

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 23 / 24

Hashing vs. Balanced Search Trees

Advantages of Balanced Search Trees
O(log n) worst-case operation cost
Does not require any assumptions, special functions,
or known properties of input distribution
Predictable space usage (exactly n nodes)
Never need to rebuild the entire structure
Supports ordered dictionary operations (rank, select etc.)

Advantages of Hash Tables
O(1) operations (if hashes well-spread and load factor small)
We can choose space-time tradeoff via load factor
Cuckoo hashing achieves O(1) worst-case for search & delete

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 7 Winter 2021 24 / 24

	Dictionaries via Hashing
	Hashing Introduction
	Direct Addressing
	Hashing
	Hashing example
	Collisions

	Separate Chaining
	Separate Chaining
	Chaining example
	Complexity of chaining
	Load factor and re-hashing

	Probe Sequences
	Open addressing
	Linear probing example
	Probe sequence operations
	Independent hash functions
	Double Hashing
	Double hashing example

	Cuckoo hashing
	Cuckoo hashing
	Cuckoo hashing insertion
	Cuckoo hashing example
	Cuckoo hashing discussions
	Complexity of open addressing strategies

	Hash Function Strategies
	Choosing a good hash function
	Universal Hashing
	Multi-dimensional Data
	Hashing vs. Balanced Search Trees

