#### CS 240 – Data Structures and Data Management

#### Module 8: Range-Searching in Dictionaries for Points

#### T. Biedl É. Schost O. Veksler Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

#### Winter 2021

version 2021-03-01 13:07

Biedl, Schost, Veksler (SCS, UW)

CS240 - Module 8

Winter 2021 1 / 38

### Outline

#### 1 Range-Searching in Dictionaries for Points

- Range Searches
- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

### Outline

#### 1

# Range-Searching in Dictionaries for Points Range Searches

- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

#### Range searches

- So far: *search*(*k*) looks for *one* specific item.
- New operation RangeSearch: look for all items that fall within a given range.
  - ► Input: A range, i.e., an interval *I* = (*x*, *x'*) It may be open or closed at the ends.
  - ▶ Want: Report all KVPs in the dictionary whose key k satisfies  $k \in I$

Example:

RangeSearch((18,45]) should return  $\{19, 33, 45\}$ 

- Let s be the output-size, i.e., the number of items in the range.
- We need  $\Omega(s)$  time simply to report the items.
- Note that sometimes *s* = 0 and sometimes *s* = *n*; we therefore keep it as a separate parameter when analyzing the run-time.

#### Range searches in existing dictionary realizations

**Unsorted list/array/hash table**: Range search requires  $\Omega(n)$  time: We have to check for each item explicitly whether it is in the range.

**Sorted array**: Range search in A can be done in  $O(\log n + s)$  time:

RangeSearch((18,45])
 5
 10
 11
 17
 19
 33
 45
 51
 55
 59

 
$$\uparrow i$$
 $\uparrow i'$ 

- Using binary search, find *i* such that x is at (or would be at) A[i].
- Using binary search, find i' such that x' is at (or would be at) A[i']
- Report all items A[i+1...i'-1]
- Report A[i] and A[i'] if they are in range

**BST**: Range searches can similarly be done in time O(height+s) time. We will see this in detail later.

Biedl, Schost, Veksler (SCS, UW)

## Outline

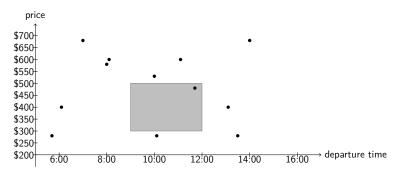


#### Range-Searching in Dictionaries for Points

- Range Searches
- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

# Multi-Dimensional Data

Range searches are of special interest for **multi-dimensional data**. **Example**: flights that leave between 9am and noon, and cost \$300-\$500



- Each item has *d* aspects (coordinates):  $(x_0, x_1, \dots, x_{d-1})$
- Aspect values (x<sub>i</sub>) are numbers
- Each item corresponds to a point in *d*-dimensional space
- We concentrate on d = 2, i.e., points in Euclidean plane

Biedl, Schost, Veksler (SCS, UW)

CS240 - Module 8

4 / 38

# Multi-dimensional Range Search

(Orthogonal) *d*-dimensional range search: Given a query rectangle *A*, find all points that lie within *A*.

The time for range searches depends on how the points are stored.

- Could store a 1-dimensional dictionary (where the key is some combination of the aspects.)
   Problem: Range search on one aspect is not straightforward
- Could use one dictionary for each aspect Problem: inefficient, wastes space
- Better idea: Design new data structures specifically for points.
  - Quadtrees
  - kd-trees
  - range-trees
- Assumption: Point are in general position: No two *x*-coordinates or *y*-coordinates are the same.
  - Simplifies presentation; data structures can be generalized.

## Outline

#### 1 Range-Searching in Dictionaries for Points

- Range Searches
- Multi-Dimensional Data

#### Quadtrees

- kd-Trees
- Range Trees
- Conclusion

#### Quadtrees

We have *n* points  $S = \{(x_0, y_0), (x_1, y_1), \cdots, (x_{n-1}, y_{n-1})\}$  in the plane.

We need a **bounding box** R: a square containing all points.

- Can find R by computing minimum and maximum x and y values in S
- The width/height of R should be a power of 2

**Structure** (and also how to *build* the quadtree that stores *S*):

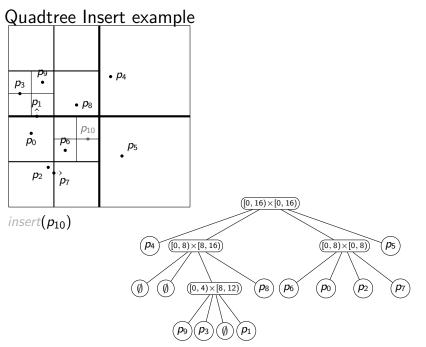
- Root r of the quadtree is associated with region R
- If R contains 0 or 1 points, then root r is a leaf that stores point.
- Else *split*: Partition *R* into four equal subsquares (quadrants) *R<sub>NE</sub>*, *R<sub>NW</sub>*, *R<sub>SW</sub>*, *R<sub>SE</sub>*
- Partition S into sets  $S_{NE}$ ,  $S_{NW}$ ,  $S_{SW}$ ,  $S_{SE}$  of points in these regions.
  - Convention: Points on split lines belong to right/top side
- Recursively build tree  $T_i$  for points  $S_i$  in region  $R_i$  and make them children of the root.

## Quadtrees example



## Quadtree Dictionary Operations

- search: Analogous to binary search trees and tries
- insert:
  - Search for the point
  - ► Split the leaf while there are two points in one region
- delete:
  - Search for the point
  - Remove the point
  - If its parent has only one point left: delete parent (and recursively all ancestors that have only one point left)



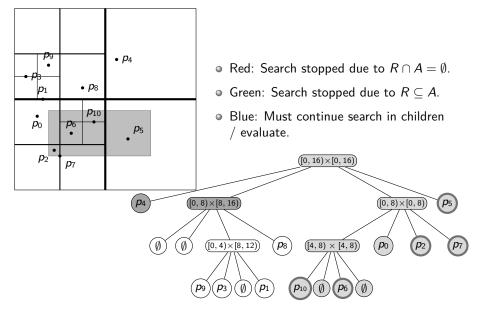
# Quadtree Range Search

```
QTree::RangeSearch(r \leftarrow root, A)
r: The root of a quadtree, A: Query-rectangle
1.
   R \leftarrow region associated with node r
2. if (R \subseteq A) then // inside node
3.
                report all points below r; return
4. if (R \cap A \text{ is empty}) then // outside node
5.
                return
                // The node is a boundary node, recurse
      if (r is a leaf) then
6.
7.
   p \leftarrow \text{point stored at } r
8.
   if p is in A return p
9
         else return
10. for each child v of r do
      QTree::RangeSearch(v, A)
11.
```

Note: We assume here that each node of the quadtree stores the associated square. Alternatively, these could be re-computed during the search (space-time tradeoff).

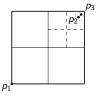
Biedl, Schost, Veksler (SCS, UW)

## Quadtree range search example



### Quadtree Analysis

- Crucial for analysis: what is the height of a quadtree?
  - ► Can have very large height for bad distributions of points

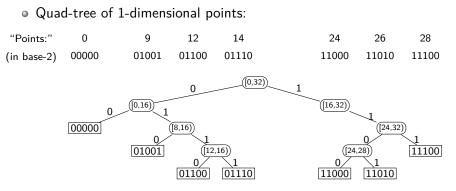


• **spread factor** of points *S*:

 $\beta(S) = \frac{\text{sidelength of } R}{\text{minimum distance between points in } S}$ 

- Can show: height *h* of quadtree is in  $\Theta(\log \beta(S))$
- Complexity to build initial tree:  $\Theta(nh)$  worst-case
- Complexity of range search:  $\Theta(nh)$  worst-case even if the answer is  $\emptyset$
- But in practice much faster.

#### Quadtrees in other dimensions



Same as a trie (with splitting stopped once key is unique)

 Quadtrees also easily generalize to higher dimensions (octrees, *etc.*) but are rarely used beyond dimension 3.

Biedl, Schost, Veksler (SCS, UW)

#### Quadtree summary

- Very easy to compute and handle
- No complicated arithmetic, only divisions by 2 (bit-shift!) if the width/height of *R* is a power of 2
- Space potentially wasteful, but good if points are well-distributed
- Variation: We could stop splitting earlier and allow up to S points in a leaf (for some fixed bound S).
- Variation: Store pixelated images by splitting until each region has the same color.

## Outline

#### 1 Range-Searching in Dictionaries for Points

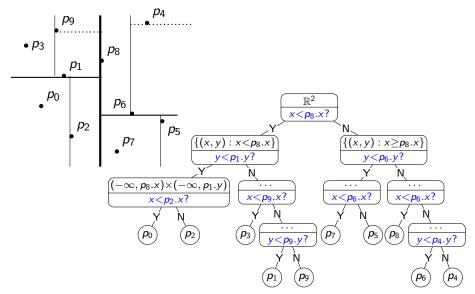
- Range Searches
- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

#### kd-trees

- We have *n* points  $S = \{(x_0, y_0), (x_1, y_1), \cdots, (x_{n-1}, y_{n-1})\}$
- Quadtrees split square into quadrants regardless of where points are
- (Point-based) kd-tree idea: Split the region such that (roughly) half the point are in each subtree
- Each node of the kd-tree keeps track of a **splitting line** in one dimension (2D: either vertical or horizontal)
- Convention: Points on split lines belong to right/top side
- Continue splitting, switching between vertical and horizontal lines, until every point is in a separate region

(There are alternatives, e.g., split by the dimension that has better aspect ratios for the resulting regions. No details.)

#### kd-tree example



For ease of drawing, we will usually not show the associated regions.

Biedl, Schost, Veksler (SCS, UW)

#### Constructing kd-trees

Build kd-tree with initial split by x on points S:

- If  $|S| \leq 1$  create a leaf and return.
- Else  $X := quick-select(S, \lfloor \frac{n}{2} \rfloor)$  (select by x-coordinate)
- Partition S by x-coordinate into  $S_{x < X}$  and  $S_{x \ge X}$ 
  - ►  $\lfloor \frac{n}{2} \rfloor$  points on one side and  $\lceil \frac{n}{2} \rceil$  points on the other. (Recall: Points in general position.)
- Create left subtree recursively (splitting by y) for points  $S_{x < X}$ .
- Create right subtree recursively (splitting by y) for points  $S_{x \ge X}$ .

Building with initial *y*-split symmetric.

## Constructing kd-trees

Run-time:

- Find X and partition S in  $\Theta(n)$  expected time using randomized-quick-select.
- Both subtrees have  $\approx n/2$  points.

 $T^{\exp}(n) = 2T^{\exp}(n/2) + O(n)$  (sloppy recurrence)

This resolves to  $\Theta(n \log n)$  expected time.

This can be reduced to Θ(n log n) worst-case time by pre-sorting (no details).

**Height:** h(1) = 0,  $h(n) \le h(\lceil n/2 \rceil) + 1$ .

• This resolves to  $O(\log n)$  (specifically  $\lceil \log n \rceil$ ).

## kd-tree Dictionary Operations

- *search* (for single point): as in binary search tree using indicated coordinate
- insert: search, insert as new leaf.
- *delete*: search, remove leaf.

**Problem:** After insert or delete, the split might no longer be at exact median and the height is no longer guaranteed to be  $\lceil \log_2 n \rceil$ .

We can maintain  $O(\log n)$  height by occasionally re-building entire subtrees. (No details.) But rangeSearch will be slower.

kd-trees do not handle insertion/deletion well.

Biedl, Schost, Veksler (SCS, UW)

# kd-tree Range Search

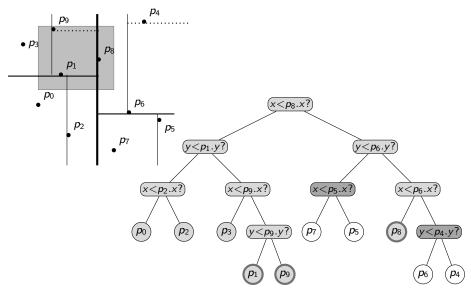
• Range search is *exactly* as for quad-trees, except that there are only two children.

```
kdTree::RangeSearch(r \leftarrow root, A)
r: The root of a kd-tree, A: Query-rectangle
      R \leftarrow region associated with node r
1
2. if (R \subseteq A) then report all points below r; return
3. if (R \cap A \text{ is empty}) then return
4. if (r is a leaf) then
5. p \leftarrow \text{point stored at } r
6.
  if p is in A return p
7.
     else return
8. for each child v of r do
      kdTree::RangeSearch(v,A)
9.
```

- We assume again that each node stores its associated region.
- To save space, we could instead pass the region as a parameter and compute the region for each child using the splitting line.

Biedl, Schost, Veksler (SCS, UW)

## kd-tree: Range Search Example



Red: Search stopped due to  $R \cap A = \emptyset$ . Green: Search stopped due to  $R \subseteq A$ .

## kd-tree: Range Search Complexity

- The complexity is O(s + Q(n)) where
  - ▶ *s* is the output-size
  - ► Q(n) is the number of "boundary" nodes (blue):
    - ★ *kdTree::RangeSearch* was called.
    - ★ Neither  $R \subseteq A$  nor  $R \cap A = \emptyset$
- **Can show:** Q(n) satisfies the following recurrence relation (no details):

 $Q(n) \leq 2Q(n/4) + O(1)$ 

- This solves to  $Q(n) \in O(\sqrt{n})$
- Therefore, the complexity of range search in kd-trees is  $O(s + \sqrt{n})$

#### kd-tree: Higher Dimensions

- kd-trees for *d*-dimensional space:
  - ► At the root the point set is partitioned based on the first coordinate
  - ► At the subtrees of the root the partition is based on the second coordinate
  - At depth d-1 the partition is based on the last coordinate
  - At depth d we start all over again, partitioning on first coordinate
- Storage: O(n)
- **Height**:  $O(\log n)$
- **Construction time**:  $O(n \log n)$
- Range search time:  $O(s + n^{1-1/d})$

This assumes that d is a constant.

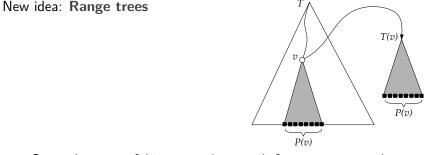
## Outline

#### 1 Range-Searching in Dictionaries for Points

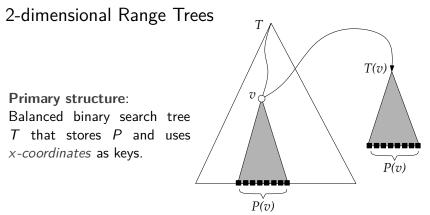
- Range Searches
- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

## Towards Range Trees

- Both Quadtrees and kd-trees are intuitive and simple.
- But: both may be very slow for range searches.
- Quadtrees are also potentially wasteful in space.

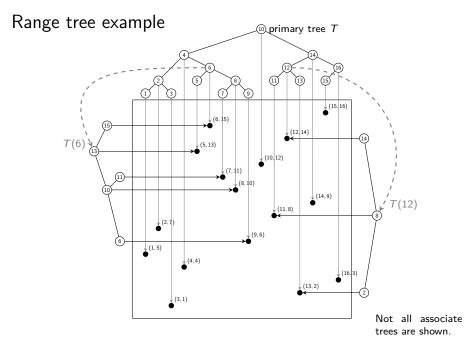


- Somewhat wasteful in space, but much faster range search.
- Tree of trees (a *multi-level* data structure)



Each node v of T stores an associate structure T(v):

- Let P(v) be all points in subtree of v in T (including point at v)
- T(v) stores P(v) in a balanced binary search tree, using the *y*-coordinates as key
- Note: v is not necessarily the root of T(v)



#### Range Tree Space Analysis

- Primary tree uses O(n) space.
- Associate tree T(v) uses O(|P(v)|) space (where P(v) are the points at descendants of v in T)
- Key insight:  $w \in P(v)$  means that v is an ancestor of w in T
  - ► Every node w has O(log n) ancestors in T (Recall that we assume T to be balanced.)
  - Every node w belongs to  $O(\log n)$  sets P(v)
  - So  $\sum_{v} |P(v)| \le \sum_{w} \#\{\text{ancestors of } w\} \in O(n \log n)$

**Therefore:** A range-tree with *n* points uses  $O(n \log n)$  space.

## Range Trees Operations

- search: search by x-coordinate in T
- insert: First, insert point by x-coordinate into T.
   Then, walk back up to the root and insert the point by y-coordinate in all associate trees T(v) of nodes v on path to the root.
- delete: analogous to insertion
- Problem: We want the binary search trees to be balanced.
  - This makes insert/delete very slow if we use AVL-trees.
     (A rotation at v changes P(v) and hence requires a re-build of T(v).)
  - ► Solution: Completely rebuild highly unbalanced subtrees (no details)
- range-search: search by x-range in T. Among found points, search by y-range in some associated trees.
- Must understand first: How to do (1-dimensional) range search in binary search tree?

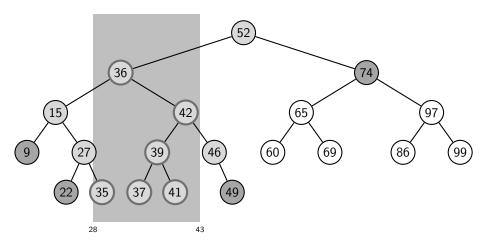
# BST Range Search

 $BST::RangeSearch(r \leftarrow root, x_1, x_2)$ r: root of a binary search tree,  $x_1, x_2$ : search keys Returns keys in subtree at r that are in range  $[x_1, x_2]$ if r = NIL then return 1 2. if  $x_1 \leq r$ .key  $\leq x_2$  then 3.  $L \leftarrow BST::RangeSearch(r.left, x_1, x_2)$  $R \leftarrow BST::RangeSearch(r.right, x_1, x_2)$ 4 return  $L \cup r.\{key\} \cup R$ 5. 6. if  $r key < x_1$  then 7. **return** BST::RangeSearch(r.right,  $x_1, x_2$ ) 8. if  $r \cdot key > x_2$  then 9. **return** BST::RangeSearch(r.left, x<sub>1</sub>, x<sub>2</sub>)

Keys are reported in in-order, i.e., in sorted order.

# BST Range Search example

BST::RangeSearch(T, 28, 43)



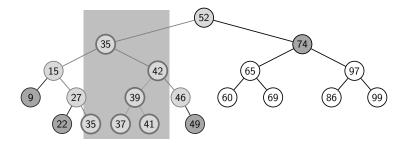
Note: Search from 39 was unnecessary: *all* its descendants are in range.

Biedl, Schost, Veksler (SCS, UW)

CS240 - Module 8

Winter 2021 30 / 38

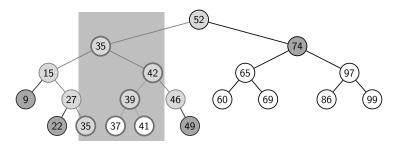
## BST Range Search re-phrased



- Search for left boundary  $x_1$ : this gives path  $P_1$
- Search for right boundary  $x_2$ : this gives path  $P_2$
- This partitions *T* into three groups: outside, on, or between the paths.

Biedl, Schost, Veksler (SCS, UW)

### BST Range Search re-phrased



• boundary nodes: nodes in  $P_1$  or  $P_2$ 

► For each boundary node, test whether it is in the range.

• outside nodes: nodes that are left of  $P_1$  or right of  $P_2$ 

These are not in the range, we stop the search at the topmost.

- inside nodes: nodes that are right of  $P_1$  and left of  $P_2$ 
  - We stop the search at the topmost inside node.
  - ► All descendants of such a node are *in* the range. For a 1d range search, report them.

Biedl, Schost, Veksler (SCS, UW)

## BST Range Search analysis

Assume that the binary search tree is balanced:

- Search for path  $P_1$ :  $O(\log n)$
- Search for path P<sub>2</sub>: O(log n)
- O(log n) boundary nodes
- We spend O(1) time on each.



- We spend O(1) time per topmost outside node.
  - They are children of boundary nodes, so this takes  $O(\log n)$  time.
- We spend O(1) time per topmost inside node v.
  - They are children of boundary nodes, so this takes  $O(\log n)$  time.
- For 1d range search, also report the descendants of v.
  - We have ∑<sub>v</sub> topmost inside #{descendants of v} ≤ s since subtrees of topmost inside nodes are disjoint. So this takes time O(s) overall.

Run-time for 1d range search:  $O(\log n + s)$ . This is no faster overall, but topmost inside nodes will be important for 2d range search.

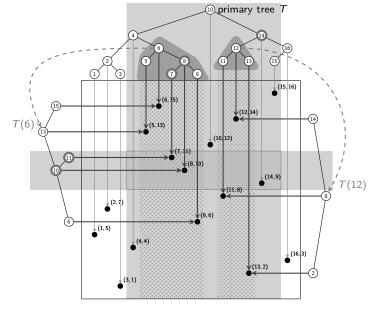
Biedl, Schost, Veksler (SCS, UW)

## Range Trees: Range Search

Range search for  $A = [x_1, x_2] \times [y_1, y_2]$  is a two stage process:

- Perform a range search (on the x-coordinates) for the interval [x<sub>1</sub>, x<sub>2</sub>] in primary tree T (BST::RangeSearch(T, x<sub>1</sub>, x<sub>2</sub>))
- Get boundary, topmost outside and topmost inside nodes as before.
- For every boundary node, test to see if the corresponding point is within the region *A*.
- For every topmost inside node v:
  - Let P(v) be the points in the subtree of v in T.
  - We know that all x-coordinates of points in P(v) are within range.
  - Recall: P(v) is stored in T(v).
  - ► To find points in P(v) where the y-cordinates are within range as well, perform a range search in T(v): BST::RangeSearch(T(v), y<sub>1</sub>, y<sub>2</sub>)

#### Range tree range search example



Biedl, Schost, Veksler (SCS, UW)

## Range Trees: Range Search Run-time

- $O(\log n)$  time to find boundary and topmost inside nodes in primary tree.
- There are  $O(\log n)$  such nodes.
- $O(\log n + s_v)$  time for each topmost inside node v, where  $s_v$  is the number of points in T(v) that are reported
- Two topmost inside nodes have no common point in their trees  $\Rightarrow$  every point is reported in at most one associate structure  $\Rightarrow \sum_{v \text{ topmost inside }} s_v \leq s$

Time for range search in range-tree is proportional to

$$\sum_{v \text{ topmost inside}} (\log n + s_v) \in O(\log^2 n + s)$$

(There are ways to make this even faster. No details.)

Biedl, Schost, Veksler (SCS, UW)

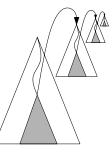
# Range Trees: Higher Dimensions

• Range trees can be generalized to *d*-dimensional space.

Space $O(n(\log n)^{d-1})$ kd-trees: O(n)Construction time $O(n(\log n)^d)$ kd-trees:  $O(n \log n)$ Range search time $O(s + (\log n)^d)$ kd-trees:  $O(s + n^{1-1/d})$ 

(Note: *d* is considered to be a constant.)

• Space/time trade-off compared to kd-trees.



## Outline

#### 1 Range-Searching in Dictionaries for Points

- Range Searches
- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

# Range search data structures summary

#### Quadtrees

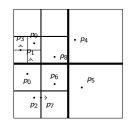
- ▶ simple (also for dynamic set of points)
- work well only if points evenly distributed
- wastes space for higher dimensions
- kd-trees
  - linear space
  - range search time  $O(\sqrt{n} + s)$
  - inserts/deletes destroy balance and range search time (no simple fix)
- range-trees
  - range search time  $O(\log^2 n + s)$
  - wastes some space
  - ► inserts/deletes destroy balance (can fix this with occasional rebuilt)

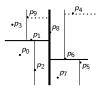
Convention: Points on split lines belong to right/top side.

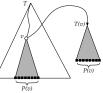
Biedl, Schost, Veksler (SCS, UW)

CS240 - Module 8

38 / 38







Winter 2021