CS 240 – Data Structures and Data Management

Module 8: Range-Searching - Enriched

T. Biedl É. Schost O. Veksler Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-03-01 13:08

Biedl, Schost, Veksler (SCS, UW)

CS240 - Module 8

Winter 2021 1 / 15

Outline

1 Boundary nodes in kd-trees

Bounday nodes in kd-trees

Recall: Q(n) are the boundary-nodes (blue). **Goal:** $Q(n) \in O(\sqrt{n})$.

Observation: If v is a boundary-node, then its associated region intersects one of the lines ℓ_W , ℓ_N , ℓ_E , ℓ_S that support the query-rectangle.

Biedl, Schost, Veksler (SCS, UW)

Boundary nodes in kd-trees

This is independent of ℓ (shift points), so only consider whether ℓ is horizontal or vertical $\rightsquigarrow Q_v(n), Q_h(n)$

$$Q(n) \leq Q(n, \ell_W) + Q(n, \ell_N) + Q(n, \ell_E) + Q(n, \ell_S)$$

$$\leq 2Q_V(n) + 2Q_h(n)$$

Biedl, Schost, Veksler (SCS, UW)

Boundary nodes in kd-trees

Goal: $Q_{\nu}(n) \leq 2Q_{\nu}(n/4) + 2$.

Biedl, Schost, Veksler (SCS, UW)

Boundary nodes in kd-trees

•
$$Q_{\nu}(n) \le 2Q_{\nu}(n/4) + 2$$

• Similarly: $Q_{h}(n) \le 2Q_{h}(n/4) + 3$
 $\Rightarrow Q_{\nu}(n) \in O(\sqrt{n})$
 $\Rightarrow Q_{h}(n) \in O(\sqrt{n})$

•
$$Q(n) \leq 2Q_v(n) + 2Q_h(n) \in O(\sqrt{n})$$

Theorem: In a range-query in a kd-tree (of points in general position) there are $O(\sqrt{n})$ boundary-nodes.

- So range-search takes $O(\sqrt{n} + s)$ time.
- Note: It is *crucial* that we have $\approx n/4$ points in each grand-child of the root.

Biedl, Schost, Veksler (SCS, UW)

3-sided range search

Consider a special kind of range-search:

3sidedRangeSearch (x_1, x_2, y') : return (x, y) with $x_1 \le x \le x_2$ and $y \ge y'$.

Can we adapt previous ideas to achieve O(n) space and fast range-search time?

Idea 1: Associated heaps

- Primary tree: balanced binary search tree.
- Associated tree: binary heap.
- Space:
 Θ(n log n).
- Range-search time?

Idea 1: Associated heaps - 3-sided range search

- Search in primary as before.
- (heap) In associated (heap) heap: Search by y-coordinate in O(1+s) time. (Exercise.)
 - Total time:
 O(log n + s)
 - But space is $\omega(n)$

Idea 2: Treaps

Recall: Treap = binary search tree (with respect to keys) + heap (with respect to priorities)

Idea: Use x-coordinate as key, y-coordinate as priority. Space: $\Theta(n)$.

Biedl, Schost, Veksler (SCS, UW)

Idea 2: Treaps - 3-sided range search

Treap::3-sided-range-search(T, 28, 47, 36):

- BST::range-search(x₁, x₂) to get boundary and topmost inside nodes.
- Boundary-nodes: Explicitly test whether in *x*-range and *y*-range.
- Topmost inside-nodes: If $y \ge y_1$, report and recurse in children.

Biedl, Schost, Veksler (SCS, UW)

Idea 2: Treaps - 3-sided range search

Run-time for 3-sided range search in treaps:

- BST::range-search $(x_1, x_2) O(height)$ since we do not report points.
- Testing boundary-nodes: O(height)
- Testing heap: $O(1 + s_v)$ per topmost inside-node v

$\Rightarrow O(height + s)$ run-time, O(n) space

But: No guarantees on the height of the treap (not even in expectation) since we cannot choose priorities.

Idea 3: Priority search trees

- Design a new data structure
- Keep good aspects of treap (store *y*-coordinates in heap-order)
- Keep good aspects of kd-tree (split in half by x-coordinate)

Key idea: The *x*-coordinate stored for splitting can be *different* from the *x*-coordinate of the stored point.

Biedl, Schost, Veksler (SCS, UW)

CS240 - Module 8

Winter 2021 12 / 15

Idea 3: Priority search trees

• every node v stores a point $p_v = (x_v, y_v)$,

- y_v is the maximum y-coordinate in subtree (heap-property!)
- every non-leaf v stores an x-coordinate x'_v (split-line)
 - Every point *p* in left subtree has $p.x < x'_v$
 - Every point *p* in right subtree has $p.x \ge x'_v$
- x'_v is chosen so that tree is balanced \Rightarrow height $O(\log n)$.

Idea 3: Priority search trees

- Construction: $O(n \log n)$ time (exercise)
- search: $O(\log n)$ time
 - ► Get search-path by following split-lines, check all nodes on path
- insert, delete: Re-balancing is difficult, but can be done (no details).
- 3-sided range search: As in treaps, but height now $O(\log n)$.
 - Run-time $O(\log n + s)$

Biedl, Schost, Veksler (SCS, UW)

3-sided range search summary

- Idea 1: Scapegoat tree + associated heaps
 O(log n + s) time for range search, but ω(n) space.
- Idea 2: Treaps
 O(n) space, but range search takes O(height + s), could be slow
- Idea 3: Priority search tree
 O(n) space, O(log n + s) time for range search.

Sometimes it pays to design purpose-built data structures.