
CS 240 – Data Structures and Data Management

Module 8: Range-Searching - Enriched

T. Biedl É. Schost O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-03-01 13:08

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021 1 / 15

Outline

1 Boundary nodes in kd-trees

2 3-sided range search

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021

Bounday nodes in kd-trees

Recall: Q(n) are the boundary-nodes (blue).
Goal: Q(n) ∈ O(

√
n).

`W `E

`S

`N

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9 x<p8.x?

y<p1.y?

x<p2.x?

p0 p2

x<p9.x?

p3 y<p9.y?

p1 p9

y<p6.y?

x<p5.x?

p7 p5

x<p6.x?

p8 y<p4.y?

p6 p4

Observation: If v is a boundary-node, then its associated region
intersects one of the lines `W , `N , `E , `S that support the query-rectangle.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021 2 / 15

Boundary nodes in kd-trees

Q(n, `) := max
kd-trees with n points

number of associated regions
that intersect a given line `

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

This is independent of ` (shift points), so only consider whether ` is
horizontal or vertical Qv (n),Qh(n)

Q(n) ≤ Q(n, `W) + Q(n, `N) + Q(n, `E) + Q(n, `S)
≤ 2Qv (n) + 2Qh(n)

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021 3 / 15

Boundary nodes in kd-trees

Goal: Qv (n) ≤ 2Qv (n/4) + 2.

p0

p1

p2

p3

p4

p5
p6

p7

p8

p9

`
R2

x<p8.x?

{(x , y) : x<p8.x}
y<p1.y?

kd-tree on at
most dn/4e
points

Y

kd-tree on at
most dn/4e
points

N

Y

No associated region
is intersected by `

N

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021 4 / 15

Boundary nodes in kd-trees

Qv (n) ≤ 2Qv (n/4) + 2 ⇒ Qv (n) ∈ O(
√
n)

Similarly: Qh(n) ≤ 2Qh(n/4) + 3 ⇒ Qh(n) ∈ O(
√
n)

Q(n) ≤ 2Qv (n) + 2Qh(n) ∈ O(
√
n)

Theorem: In a range-query in a kd-tree (of points in general position)
there are O(

√
n) boundary-nodes.

So range-search takes O(
√
n + s) time.

Note: It is crucial that we have ≈ n/4 points in each grand-child of
the root.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021 5 / 15

3-sided range search

Consider a special kind of range-search:
3sidedRangeSearch(x1, x2, y ′): return (x , y) with x1 ≤ x ≤ x2

and y ≥ y ′.

(1, 5)

(2, 7)

(3, 1)

(4, 4)

(5, 13)

(6, 15)

(7, 11)
(8, 10)

(9, 6)

(10, 12)

(11, 8)

(12, 14)

(13, 2)

(14, 9)

(15, 16)

(16, 3)

Can we adapt previous ideas to achieve O(n) space and fast range-search
time?

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021 6 / 15

Idea 1: Associated heaps

1

(1, 5)(1, 5)

2

(2, 7)(2, 7)

3

(3, 1)(3, 1)

4

(4, 4)(4, 4)

5

13
(5, 13)(5, 13)

6

15
(6, 15)(6, 15)

7

11
(7, 11)(7, 11)

8

10
(8, 10)(8, 10)

9

6
(9, 6)(9, 6)

10

(10, 12)(10, 12)

11

(11, 8)
8

(11, 8)

12

(12, 14)
14

(12, 14)

13

(13, 2)
2

(13, 2)

14

(14, 9)(14, 9)

15

(15, 16)(15, 16)

16

(16, 3)(16, 3)

T (6)
(heap) T (12)

(heap)

primary tree T

Primary tree:
balanced binary
search tree.
Associated tree:
binary heap.
Space:
Θ(n log n).
Range-search
time?

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021 7 / 15

Idea 1: Associated heaps - 3-sided range search

1

(1, 5)(1, 5)

2

(2, 7)(2, 7)

3

(3, 1)(3, 1)

4

(4, 4)(4, 4)

5

13
(5, 13)(5, 13)

6

15
(6, 15)(6, 15)

7

11
(7, 11)(7, 11)

8

10
(8, 10)(8, 10)

9

6
(9, 6)(9, 6)

10

(10, 12)(10, 12)

11

(11, 8)
8

(11, 8)

12

(12, 14)
14

(12, 14)

13

(13, 2)
2

(13, 2)

14

(14, 9)(14, 9)

15

(15, 16)(15, 16)

16

(16, 3)(16, 3)

T (6)
(heap) T (12)

(heap)

primary tree T

Search in primary
as before.
In associated
heap: Search by
y -coordinate in
O(1 + s) time.
(Exercise.)
Total time:
O(log n + s)
But space is ω(n)

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021 8 / 15

Idea 2: Treaps
Recall: Treap = binary search tree (with respect to keys)

+ heap (with respect to priorities)

52
74

35
70

15
65

9
61

27
59

22
42

29
19

42
55

39
48

37
42

41
8

46
49

49
37

74
73

65
59

60
33

69
48

97
26

86
13

Idea: Use x -coordinate as key, y -coordinate as priority.
Space: Θ(n).

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021 9 / 15

Idea 2: Treaps - 3-sided range search
Treap::3-sided-range-search(T , 28, 47, 36) :

52
74

35
70

15
65

9
61

27
59

22
42

29
19

42
55

39
48

37
42

41
8

46
49

49
37

74
73

65
59

60
33

69
48

97
26

86
13

BST::range-search(x1, x2) to get boundary and topmost inside nodes.
Boundary-nodes: Explicitly test whether in x -range and y -range.
Topmost inside-nodes: If y ≥ y1, report and recurse in children.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021 10 / 15

Idea 2: Treaps - 3-sided range search

Run-time for 3-sided range search in treaps:
BST::range-search(x1, x2) — O(height) since we do not report points.
Testing boundary-nodes: O(height)
Testing heap: O(1 + sv) per topmost inside-node v

⇒ O(height + s) run-time, O(n) space

But: No guarantees on the height of the treap (not even in expectation)
since we cannot choose priorities.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021 11 / 15

Idea 3: Priority search trees

Design a new data structure
Keep good aspects of treap (store y -coordinates in heap-order)
Keep good aspects of kd-tree (split in half by x -coordinate)

(52,74)
x<37?

(35,70)
x<22?

(15,65)
x<9?

(9.61)

(27,59)
x<25?

(22,42) (25,19)

(42,55)
x<41?

(39,48)
x<37?

(37,42)

(46,49)
x<49?

(41,8) (49,37)

Key idea: The x -coordinate stored for splitting can be different from the
x -coordinate of the stored point.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021 12 / 15

Idea 3: Priority search trees

(52,74)
x<37?

(35,70)
x<22?

(15,65)
x<9?

(9.61)

(27,59)
x<25?

(22,42) (25,19)

(42,55)
x<41?

(39,48)
x<37?

(37,42)

(46,49)
x<49?

(41,8) (49,37)

every node v stores a point pv = (xv , yv),
I yv is the maximum y -coordinate in subtree (heap-property!)

every non-leaf v stores an x -coordinate x ′
v (split-line)

I Every point p in left subtree has p.x < x ′
v

I Every point p in right subtree has p.x ≥ x ′
v

x ′
v is chosen so that tree is balanced ⇒ height O(log n).

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021 13 / 15

Idea 3: Priority search trees
(52,74)
x<37?

(35,70)
x<22?

(15,65)
x<9?

(9.61)

(27,59)
x<25?

(22,42) (25,19)

(42,55)
x<41?

(39,48)
x<37?

(37,42)

(46,49)
x<49?

(41,8) (49,37)

Construction: O(n log n) time (exercise)
search: O(log n) time

I Get search-path by following split-lines, check all nodes on path
insert, delete: Re-balancing is difficult, but can be done (no details).
3-sided range search: As in treaps, but height now O(log n).

I Run-time O(log n + s)

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021 14 / 15

3-sided range search summary

Idea 1: Scapegoat tree + associated heaps
O(log n + s) time for range search, but ω(n) space.
Idea 2: Treaps
O(n) space, but range search takes O(height + s), could be slow
Idea 3: Priority search tree
O(n) space, O(log n + s) time for range search.

Sometimes it pays to design purpose-built data structures.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021 15 / 15

	Boundary nodes in kd-trees
	Bounday nodes in kd-trees
	Boundary nodes in kd-trees
	Boundary nodes in kd-trees
	Boundary nodes in kd-trees

	3-sided range search
	3-sided range search
	Idea 1: Associated heaps
	Idea 1: Associated heaps - 3-sided range search
	Idea 2: Treaps
	Idea 2: Treaps - 3-sided range search
	Idea 2: Treaps - 3-sided range search
	Idea 3: Priority search trees
	Idea 3: Priority search trees
	Idea 3: Priority search trees
	3-sided range search summary

