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Bounday nodes in kd-trees

Recall: Q(n) are the boundary-nodes (blue).
Goal: Q(n) ∈ O(

√
n).
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Observation: If v is a boundary-node, then its associated region
intersects one of the lines `W , `N , `E , `S that support the query-rectangle.
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Boundary nodes in kd-trees

Q(n, `) := max
kd-trees with n points

number of associated regions
that intersect a given line `
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This is independent of ` (shift points), so only consider whether ` is
horizontal or vertical  Qv (n),Qh(n)

Q(n) ≤ Q(n, `W ) + Q(n, `N) + Q(n, `E ) + Q(n, `S)
≤ 2Qv (n) + 2Qh(n)

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 8 Winter 2021 3 / 15



Boundary nodes in kd-trees

Goal: Qv (n) ≤ 2Qv (n/4) + 2.
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Boundary nodes in kd-trees

Qv (n) ≤ 2Qv (n/4) + 2 ⇒ Qv (n) ∈ O(
√
n)

Similarly: Qh(n) ≤ 2Qh(n/4) + 3 ⇒ Qh(n) ∈ O(
√
n)

Q(n) ≤ 2Qv (n) + 2Qh(n) ∈ O(
√
n)

Theorem: In a range-query in a kd-tree (of points in general position)
there are O(

√
n) boundary-nodes.

So range-search takes O(
√
n + s) time.

Note: It is crucial that we have ≈ n/4 points in each grand-child of
the root.
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3-sided range search

Consider a special kind of range-search:
3sidedRangeSearch(x1, x2, y ′): return (x , y) with x1 ≤ x ≤ x2

and y ≥ y ′.
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Can we adapt previous ideas to achieve O(n) space and fast range-search
time?
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Idea 1: Associated heaps
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Primary tree:
balanced binary
search tree.
Associated tree:
binary heap.
Space:
Θ(n log n).
Range-search
time?
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Idea 1: Associated heaps - 3-sided range search
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Search in primary
as before.
In associated
heap: Search by
y -coordinate in
O(1 + s) time.
(Exercise.)
Total time:
O(log n + s)
But space is ω(n)
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Idea 2: Treaps
Recall: Treap = binary search tree (with respect to keys)

+ heap (with respect to priorities)
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Idea: Use x -coordinate as key, y -coordinate as priority.
Space: Θ(n).
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Idea 2: Treaps - 3-sided range search
Treap::3-sided-range-search(T , 28, 47, 36) :
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BST::range-search(x1, x2) to get boundary and topmost inside nodes.
Boundary-nodes: Explicitly test whether in x -range and y -range.
Topmost inside-nodes: If y ≥ y1, report and recurse in children.
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Idea 2: Treaps - 3-sided range search

Run-time for 3-sided range search in treaps:
BST::range-search(x1, x2) — O(height) since we do not report points.
Testing boundary-nodes: O(height)
Testing heap: O(1 + sv ) per topmost inside-node v

⇒ O(height + s) run-time, O(n) space

But: No guarantees on the height of the treap (not even in expectation)
since we cannot choose priorities.
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Idea 3: Priority search trees

Design a new data structure
Keep good aspects of treap (store y -coordinates in heap-order)
Keep good aspects of kd-tree (split in half by x -coordinate)

(52,74)
x<37?

(35,70)
x<22?

(15,65)
x<9?
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(42,55)
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(39,48)
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(46,49)
x<49?

(41,8) (49,37)

Key idea: The x -coordinate stored for splitting can be different from the
x -coordinate of the stored point.
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Idea 3: Priority search trees
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(42,55)
x<41?

(39,48)
x<37?

(37,42)
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every node v stores a point pv = (xv , yv ),
I yv is the maximum y -coordinate in subtree (heap-property!)

every non-leaf v stores an x -coordinate x ′
v (split-line)

I Every point p in left subtree has p.x < x ′
v

I Every point p in right subtree has p.x ≥ x ′
v

x ′
v is chosen so that tree is balanced ⇒ height O(log n).
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Idea 3: Priority search trees
(52,74)
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Construction: O(n log n) time (exercise)
search: O(log n) time

I Get search-path by following split-lines, check all nodes on path
insert, delete: Re-balancing is difficult, but can be done (no details).
3-sided range search: As in treaps, but height now O(log n).

I Run-time O(log n + s)
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3-sided range search summary

Idea 1: Scapegoat tree + associated heaps
O(log n + s) time for range search, but ω(n) space.
Idea 2: Treaps
O(n) space, but range search takes O(height + s), could be slow
Idea 3: Priority search tree
O(n) space, O(log n + s) time for range search.

Sometimes it pays to design purpose-built data structures.
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