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Towards red-black-tree

(We currently only consider run-time in RAM. We will return to the EMM shortly.)

©

Recall: All operations in 2-4 trees have O(log n) worst-case run-time.

o The height is much smaller than for AVL-trees (log,(241)

vs. loge(n) =~ 1.44 log, n.)

()

So they might be more efficient, depending on implementation details.

©

But: Handling three kinds of nodes is cumbersome.
(We either need a list for KVPs and subtrees, or waste space at nodes
to have space for links always available.)

Better idea: Design a class of binary search trees that mirrors 2-4-trees!
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2-4-tree to red-black-tree

5112
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Converting a 2-4-tree:

o A d-node becomes a black node with d—1 red children
(Assembled so that they form a BST of height at most 1.)

Resulting properties:
o Any red node has a black parent.

o Any empty subtree T has the same black-depth
(number of black nodes on path from root to T)

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021 3/15



Red-black-trees

Definition: A red-black tree is a binary search tree such that
o Every node has a color (red or black)

o Every red node has a black parent.
(In particular the root is black.)

o Any empty subtree T has the same black-depth.

Note: Can store this with one bit overhead per node.
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Red-black tree
Rather than proving properties directly, we re-use properties of 2-4-trees.

Lemma: Any red-black tree T can be converted into a 2-4-tree T’ where
height(T') =black-depth(T) — 1.
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Proof:
o Black node with 0 < d < 2 red children becomes a (d+1)-node
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Red-black tree properties

o Red-black trees have height < 2log(t!) + 1

» black-depth < Iog(’%’l) + 1 by 2-4-tree height.
» At least half of the nodes on the path to deepest nodes are black
(recall: red nodes have black parents)
= height=+# nodes on path - 1 < 2 black-depth - 1

° / can be done as for 2-4-trees.

» One can “translate” the code directly to red-black trees.
» The transfer/split/merge operations become rotations.

o So all operations take ©(log n) worst-case time.
o In the worst case, ©(log n) rotations are required for /
o But experiments show that few rotations usually suffice, and

red-black trees are faster than AVL-trees.

This is a very efficient balanced binary search tree.

(There are even better balanced binary search trees. No details.)
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Pre-emptive splitting/merging

©

©

©

Bied|

[32[v[a[58]v[e{—] [e]

[p[14][v]g[20]v]e]26]v]e]

[p[38]v]g[44[v]e]50[v]e]

[pl64]v]s[70[v]e] T Te]

Observe: (k, v) traverses tree twice:

» Search down on a path to the leaf where we add (k, v).

» Go back up on the path to fix overflow, if needed.

So the number of block-transfers could be twice the height.

How can we avoid this?

Idea: During the search, always split if the node is full.

Then a node split at the leaf does not create an overfull parent.
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Pre-emptive splitting/merging example
(49):

[32]v]a[58]v][ef—] e]

[pl14]v]e[20[v]e[26]v[e]  [e]38]v[e[44[v]e[50]v]e]  [s[64[v][e[70[v]e[ [ Te]

If node is not full, keep searching.
If node is full, immediately split.
Then keep searching in appropriate new node.

© ©0 o0 o

We may have split unnecessarily. (But space is cheap.)

Similarly should pre-emptively merge. (No details.)

©

With this, we no longer need parent-references.

©
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Towards B -trees
' Two types of tree-structures, depending on where values are stored.

Storage-variant: Every node stores a KVP.

Heap:

Decision-variant: All KVPs at leaves, internal nodes/edges guide search.
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Towards BT -trees

o For storage-variant, there usually exists an equivalent decision-variant.

o For example for binary search trees:
» Choose a tree with n leaves where internal nodes have 2 children.
» Internal nodes store minimum in right subtree.
» Rotations now also update split-lines.

We have seen a similar construction in priority search trees.

o In internal memory, decision-tree variants waste space
(typically ~ twice as many nodes)
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Towards BT -trees

In a B-tree, each node is one block of memory. In this example, up to 10
keys/references fit into one block, so the order is 4.
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This B-tree could store up to 63 KVPs with height 2.
Two ideas to achieve smaller height:

@ The leaves are wasting space for references that will never be used.

@ Use a decision-tree version = inner nodes can have more children.
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B -trees

o Each node is one block of memory.
o All KVPs are stored at leaves. Each leaf is at least half full.
o Interior nodes store only keys for comparison during search.

o Interior (non-root) nodes have at least half of the possible subtrees.

° / use pre-emptive splitting/merging.
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This B*-tree could store up to 125 KVPs with height 2.
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BT -trees in external memory

Recall: Close-up on one node of a regular B-tree:

external memory

[mmmmmmmummmu!mmmmmummmmmmmmmumummm.}

A transfer
if Ty
needed
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unused (node not full)

v e

In this example: 17 computer-words fit into one block, so the B-tree can
have order 6.
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BT -tree in external memory

Contrast with: Close-up on one interior node of a BT -tree:

external memory

[mmmmmmmummmmrmmmmmummmmmmmmmumummm.}
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In this example: 17 computer-words fit into one block, so the BT-tree can
have order 9.
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BT -tree summary

o Order is typically a factor of % bigger than for B-trees.
o BT-tree needs to store ~ twice as many keys

o Height-comparison (where b is the order of the B-tree):

Bt-tree vs. B-tree
0g3,(21) 085(1)
2
Il Il
logn+1 log n
log b + log(3/2) log b
~0.7

o BT-trees have smaller height, and use only one pass.
o Best for storing huge dictionaries in external memory.

(For data base implementations, there are further tricks such as linking the leaves as a
list. See cs448 for details.)
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