CS 240 — Data Structures and Data Management

Module 11: External Memory - enriched

T. Biedl E.Schost O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-03-30 19:23

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021 1/15

Outline

(D External Memory
o Red-black trees
o Pre-emptive splitting/merging
o Bt-trees

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11

Winter 2021

Outline

(D External Memory
o Red-black trees

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021

Towards red-black-tree

(We currently only consider run-time in RAM. We will return to the EMM shortly.)

©

Recall: All operations in 2-4 trees have O(log n) worst-case run-time.

o The height is much smaller than for AVL-trees (log,(241)

vs. loge(n) =~ 1.44 log, n.)

()

So they might be more efficient, depending on implementation details.

©

But: Handling three kinds of nodes is cumbersome.
(We either need a list for KVPs and subtrees, or waste space at nodes
to have space for links always available.)

Better idea: Design a class of binary search trees that mirrors 2-4-trees!

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021 2/15

2-4-tree to red-black-tree

5112

[3[4]{11][13]14]15
doo 00 o 0o 0

Converting a 2-4-tree:

o A d-node becomes a black node with d—1 red children
(Assembled so that they form a BST of height at most 1.)

Resulting properties:
o Any red node has a black parent.

o Any empty subtree T has the same black-depth
(number of black nodes on path from root to T)

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021 3/15

Red-black-trees

Definition: A red-black tree is a binary search tree such that
o Every node has a color (red or black)

o Every red node has a black parent.
(In particular the root is black.)

o Any empty subtree T has the same black-depth.

Note: Can store this with one bit overhead per node.
Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021

4/15

Red-black tree
Rather than proving properties directly, we re-use properties of 2-4-trees.

Lemma: Any red-black tree T can be converted into a 2-4-tree T’ where
height(T') =black-depth(T) — 1.

|8|13|17|

[9]11] [15][22[25]27]
[[| I

o b 6o0b o0 & 06

Proof:
o Black node with 0 < d < 2 red children becomes a (d+1)-node
Bied|, Schost, Veksler (SCS, UW)

CS240 — Module 11 Winter 2021 5/15

Red-black tree properties

o Red-black trees have height < 2log(t!) + 1

» black-depth < Iog(’%’l) + 1 by 2-4-tree height.
» At least half of the nodes on the path to deepest nodes are black
(recall: red nodes have black parents)
= height=+# nodes on path - 1 < 2 black-depth - 1

° / can be done as for 2-4-trees.

» One can “translate” the code directly to red-black trees.
» The transfer/split/merge operations become rotations.

o So all operations take ©(log n) worst-case time.
o In the worst case, ©(log n) rotations are required for /
o But experiments show that few rotations usually suffice, and

red-black trees are faster than AVL-trees.

This is a very efficient balanced binary search tree.

(There are even better balanced binary search trees. No details.)
Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021 6 /15

Outline

(D External Memory

o Pre-emptive splitting/merging

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021

Pre-emptive splitting/merging

©

©

©

Bied|

[32[v[a[58]v[e{—] [e]

[p[14][v]g[20]v]e]26]v]e]

[p[38]v]g[44[v]e]50[v]e]

[pl64]v]s[70[v]e] T Te]

Observe: (k, v) traverses tree twice:

» Search down on a path to the leaf where we add (k, v).

» Go back up on the path to fix overflow, if needed.

So the number of block-transfers could be twice the height.

How can we avoid this?

Idea: During the search, always split if the node is full.

Then a node split at the leaf does not create an overfull parent.

, Schost, Veksler (SCS, UW)

CS240 — Module 11

Winter 2021

7/15

Pre-emptive splitting/merging example
(49):

[32]v]a[58]v][ef—] e]

[pl14]v]e[20[v]e[26]v[e] [e]38]v[e[44[v]e[50]v]e] [s[64[v][e[70[v]e[[Te]

If node is not full, keep searching.
If node is full, immediately split.
Then keep searching in appropriate new node.

© ©0 o0 o

We may have split unnecessarily. (But space is cheap.)

Similarly should pre-emptively merge. (No details.)

©

With this, we no longer need parent-references.

©

Biedl, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021 8/15

Outline

(D External Memory

o Bt-trees

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021

Towards B -trees
' Two types of tree-structures, depending on where values are stored.

Storage-variant: Every node stores a KVP.

Heap:

Decision-variant: All KVPs at leaves, internal nodes/edges guide search.

Trie: $
%m)‘lﬂ
0

1\<°/H0+1+$
1
S
{ 8y s ooy /
1\» % @<poy?) ¢<ps.yd) G<psy)
0
1—<

S
~—$—1101%,v
I g ‘ k ‘ k ‘ k

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021 9 /15

Towards BT -trees

o For storage-variant, there usually exists an equivalent decision-variant.

o For example for binary search trees:
» Choose a tree with n leaves where internal nodes have 2 children.
» Internal nodes store minimum in right subtree.
» Rotations now also update split-lines.

We have seen a similar construction in priority search trees.

o In internal memory, decision-tree variants waste space
(typically ~ twice as many nodes)

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021 10 / 15

Towards BT -trees

In a B-tree, each node is one block of memory. In this example, up to 10
keys/references fit into one block, so the order is 4.

”////////”,,//44132IVI*J5SIVI‘+\l\J:l

[p[14]v]e[20[v]e[26]v][e] [#]38]v[#]44][v]¢[50]V]

K3 K3 KX] [o] K3
v v v v [V v
KX KX KX o [e] KX
12| [18] [24] [30] [36] [42]

vl v vl vl vl V]
[o] [o]
]]
]]
(o] [o]

l

[Py
l o

B S
[o] [[e[</&]e[<8]e]
o1 (Sl o1
[SI<[Se[<[Z[e[<[e]

This B-tree could store up to 63 KVPs with height 2.
Two ideas to achieve smaller height:

@ The leaves are wasting space for references that will never be used.

@ Use a decision-tree version = inner nodes can have more children.

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021 11 /15

B -trees

o Each node is one block of memory.
o All KVPs are stored at leaves. Each leaf is at least half full.
o Interior nodes store only keys for comparison during search.

o Interior (non-root) nodes have at least half of the possible subtrees.

° / use pre-emptive splitting/merging.
[<467]efTe] [o] o] |
[p]<167]9]<247[«]<327]a[<407]«]]

~
~

L
-
- L

]

INPIFS
BRRRESESE

[
L]

This B*-tree could store up to 125 KVPs with height 2.

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021 12 /15

BT -trees in external memory

Recall: Close-up on one node of a regular B-tree:

external memory

[mmmmmmmummmu!mmmmmummmmmmmmmumummm.}

A transfer
if Ty
needed

internal memory

parent T

0 T T2 T3
o|ef[n]e]]v]e|k]vn]e]r]] []"]-]

unused (node not full)

v e

In this example: 17 computer-words fit into one block, so the B-tree can
have order 6.

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021 13 /15

BT -tree in external memory

Contrast with: Close-up on one interior node of a BT -tree:

external memory

[mmmmmmmummmmrmmmmmummmmmmmmmumummm.}

transfer i
1
needed

internal memory

To Lt T2 T3
Lo lla] efie] o [k @ Ji] e [i] e [i] e [i e]r]]

unused (node not full)

In this example: 17 computer-words fit into one block, so the BT-tree can
have order 9.

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021 14 / 15

BT -tree summary

o Order is typically a factor of % bigger than for B-trees.
o BT-tree needs to store ~ twice as many keys

o Height-comparison (where b is the order of the B-tree):

Bt-tree vs. B-tree
0g3,(21) 085(1)
2
Il Il
logn+1 log n
log b + log(3/2) log b
~0.7

o BT-trees have smaller height, and use only one pass.
o Best for storing huge dictionaries in external memory.

(For data base implementations, there are further tricks such as linking the leaves as a
list. See cs448 for details.)

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021 15 /15

	External Memory
	Red-black trees
	Towards red-black-tree
	2-4-tree to red-black-tree
	Red-black-trees
	Red-black tree
	Red-black tree properties

	Pre-emptive splitting/merging
	Pre-emptive splitting/merging
	Pre-emptive splitting/merging example

	B+-trees
	Towards B+-trees
	Towards B+-trees
	Towards B+-trees
	B+-trees
	B+-trees in external memory
	B+-tree in external memory
	B+-tree summary

