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Towards red-black-tree
(We currently only consider run-time in RAM. We will return to the EMM shortly.)

Recall: All operations in 2-4 trees have O(log n) worst-case run-time.
The height is much smaller than for AVL-trees (log2(n+1

2 )
vs. logΦ(n) ≈ 1.44 log2 n.)
So they might be more efficient, depending on implementation details.

But: Handling three kinds of nodes is cumbersome.
(We either need a list for KVPs and subtrees, or waste space at nodes
to have space for links always available.)

Better idea: Design a class of binary search trees that mirrors 2-4-trees!
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2-4-tree to red-black-tree
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Converting a 2-4-tree:
A d-node becomes a black node with d−1 red children
(Assembled so that they form a BST of height at most 1.)

Resulting properties:
Any red node has a black parent.
Any empty subtree T has the same black-depth
(number of black nodes on path from root to T )
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Red-black-trees
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Definition: A red-black tree is a binary search tree such that
Every node has a color (red or black)
Every red node has a black parent.
(In particular the root is black.)
Any empty subtree T has the same black-depth.

Note: Can store this with one bit overhead per node.
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Red-black tree
Rather than proving properties directly, we re-use properties of 2-4-trees.

Lemma: Any red-black tree T can be converted into a 2-4-tree T ′ where
height(T ′) =black-depth(T )− 1.
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Proof:
Black node with 0 ≤ d ≤ 2 red children becomes a (d+1)-node
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Red-black tree properties
Red-black trees have height ≤ 2 log(n+1

2 ) + 1
I black-depth ≤ log( n+1

2 ) + 1 by 2-4-tree height.
I At least half of the nodes on the path to deepest nodes are black

(recall: red nodes have black parents)
⇒ height=# nodes on path - 1 ≤ 2 black-depth - 1

insert/delete can be done as for 2-4-trees.
I One can “translate” the code directly to red-black trees.
I The transfer/split/merge operations become rotations.

So all operations take Θ(log n) worst-case time.
In the worst case, Θ(log n) rotations are required for insert/delete.
But experiments show that few rotations usually suffice, and
red-black trees are faster than AVL-trees.

This is a very efficient balanced binary search tree.

(There are even better balanced binary search trees. No details.)
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Pre-emptive splitting/merging
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Observe: BTree::insert(k, v) traverses tree twice:
I Search down on a path to the leaf where we add (k, v).
I Go back up on the path to fix overflow, if needed.

So the number of block-transfers could be twice the height.
How can we avoid this?

Idea: During the search, always split if the node is full.
Then a node split at the leaf does not create an overfull parent.
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Pre-emptive splitting/merging example
PreemptiveBTree::insert(49):
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If node is not full, keep searching.
If node is full, immediately split.
Then keep searching in appropriate new node.
We may have split unnecessarily. (But space is cheap.)

Similarly delete should pre-emptively merge. (No details.)
With this, we no longer need parent-references.
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Towards B+-trees
‘ Two types of tree-structures, depending on where values are stored.

Storage-variant: Every node stores a KVP.

Heap: 50,v
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BST-tree: 15,v
6,v

10,v
8,v 14,v

25,v
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Decision-variant: All KVPs at leaves, internal nodes/edges guide search.
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y<p1.y?

x<p2.x?

p0,v p2,v

x<p9.x?

p3,v y<p9.y?

p1,v p9,v

y<p6.y?

p7,v x<p4.x?

y<p8.y?

p6,v p8,v

y<p4.y?
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Towards B+-trees

For storage-variant, there usually exists an equivalent decision-variant.
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For example for binary search trees:
I Choose a tree with n leaves where internal nodes have 2 children.
I Internal nodes store minimum in right subtree.
I Rotations now also update split-lines.

We have seen a similar construction in priority search trees.
In internal memory , decision-tree variants waste space
(typically ≈ twice as many nodes)
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Towards B+-trees
In a B-tree, each node is one block of memory. In this example, up to 10
keys/references fit into one block, so the order is 4.
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This B-tree could store up to 63 KVPs with height 2.

Two ideas to achieve smaller height:
1 The leaves are wasting space for references that will never be used.
2 Use a decision-tree version ⇒ inner nodes can have more children.
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B+-trees

Each node is one block of memory.
All KVPs are stored at leaves. Each leaf is at least half full.
Interior nodes store only keys for comparison during search.
Interior (non-root) nodes have at least half of the possible subtrees.
insert/delete use pre-emptive splitting/merging.
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This B+-tree could store up to 125 KVPs with height 2.
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B+-trees in external memory

Recall: Close-up on one node of a regular B-tree:

transfer
if T1
needed internal memory

external memory
. . .

• • • • • • •
parent T0

k1 v1
T1

k2 v2
T2

k3 v3
T3

k4 v4
T4

k5 v5
T5

unused (node not full)

In this example: 17 computer-words fit into one block, so the B-tree can
have order 6.
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B+-tree in external memory

Contrast with: Close-up on one interior node of a B+-tree:

transfer if
T1
needed internal memory

external memory
. . .

• • • • • • • • •
T0

k1
T1

k2
T2

k3
T3

k4
T4

k5
T5

k6
T6

k7
T7

k8
T8

unused (node not full)

In this example: 17 computer-words fit into one block, so the B+-tree can
have order 9.
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B+-tree summary

Order is typically a factor of 3
2 bigger than for B-trees.

B+-tree needs to store ≈ twice as many keys
Height-comparison (where b is the order of the B-tree):

B+-tree vs. B-tree

log 3
2b

(2n) logb(n)

= =

log n + 1
log b + log(3/2)︸ ︷︷ ︸

≈0.7

<
log n
log b

B+-trees have smaller height, and use only one pass.
Best for storing huge dictionaries in external memory.

(For data base implementations, there are further tricks such as linking the leaves as a
list. See cs448 for details.)
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