### CS 240 – Data Structures and Data Management

## Module 2: Priority Queues

#### T. Biedl É. Schost O. Veksler Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-02-10 12:27

# Outline

#### Priority Queues

- Abstract Data Types
- ADT Priority Queue
- Binary Heaps
- Operations in Binary Heaps
- PQ-sort and Heapsort
- Towards the Selection Problem

# Outline

#### 1 Priority Queues

#### • Abstract Data Types

- ADT Priority Queue
- Binary Heaps
- Operations in Binary Heaps
- PQ-sort and Heapsort
- Towards the Selection Problem

**Abstract Data Type (ADT):** A description of *information* and a collection of *operations* on that information.

The information is accessed *only* through the operations.

We can have various realizations of an ADT, which specify:

- How the information is stored (data structure)
- How the operations are performed (algorithms)

# Stack ADT

**Stack:** an ADT consisting of a collection of items with operations:

- *push*: inserting an item
- *pop*: removing (and typically returning) the most recently inserted item

Items are removed in LIFO (*last-in first-out*) order. Items enter the stack at the *top* and are removed from the *top*. We can have extra operations: *size*, *isEmpty*, and *top* 

Applications: Addresses of recently visited web sites, procedure calls

Realizations of Stack ADT

- using arrays
- using linked lists

# Queue ADT

**Queue:** an ADT consisting of a collection of items with operations:

- enqueue: inserting an item
- *dequeue*: removing (and typically returning) the least recently inserted item

Items are removed in FIFO (*first-in first-out*) order. Items enter the queue at the *rear* and are removed from the *front*. We can have extra operations: *size*, *isEmpty*, and *front* 

Applications: Waiting lines, printer queues

Realizations of Queue ADT

- using (circular) arrays
- using linked lists

# Outline

#### Priority Queues

• Abstract Data Types

#### • ADT Priority Queue

- Binary Heaps
- Operations in Binary Heaps
- PQ-sort and Heapsort
- Towards the Selection Problem

# Priority Queue ADT

**Priority Queue:** An ADT consisting of a collection of items (each having a **priority**) with operations

• insert: inserting an item tagged with a priority

• *deleteMax*: removing and returning the item of *highest* priority *deleteMax* is also called *extractMax* or *getmax*. The priority is also called *key*.

The above definition is for a **maximum-oriented** priority queue. A **minimum-oriented** priority queue is defined in the natural way, replacing operation *deleteMax* by *deleteMin*,

Applications: typical "todo" list, simulation systems, sorting

## Using a Priority Queue to Sort

$$\begin{array}{ll} PQ\text{-Sort}(A[0..n-1])\\ 1. & \text{initialize } PQ \text{ to an empty priority queue}\\ 2. & \text{for } i \leftarrow 0 \text{ to } n-1 \text{ do}\\ 3. & PQ\text{.insert}(A[i])\\ 4. & \text{for } i \leftarrow n-1 \text{ down to } 0 \text{ do}\\ 5. & A[i] \leftarrow PQ\text{.deleteMax}() \end{array}$$

- Note: Run-time depends on how we implement the priority queue.
- Sometimes written as:  $O(initialization + n \cdot insert + n \cdot deleteMax)$

Realization 1: unsorted arrays

Realization 1: unsorted arrays

- *insert*: *O*(1)
- deleteMax: O(n)

**Note:** We assume **dynamic arrays**, i. e., expand by doubling as needed. (Amortized over all insertions this takes O(1) extra time.)

Realization 1: unsorted arrays

- *insert*: *O*(1)
- deleteMax: O(n)

**Note:** We assume **dynamic arrays**, i. e., expand by doubling as needed. (Amortized over all insertions this takes O(1) extra time.)

Using unsorted linked lists is identical. *PQ-sort* with this realization yields *selection sort*.

Realization 1: unsorted arrays

- *insert*: *O*(1)
- deleteMax: O(n)

**Note:** We assume **dynamic arrays**, i. e., expand by doubling as needed. (Amortized over all insertions this takes O(1) extra time.)

Using unsorted linked lists is identical. *PQ-sort* with this realization yields *selection sort*.

Realization 2: sorted arrays

Realization 1: unsorted arrays

- *insert*: *O*(1)
- deleteMax: O(n)

**Note:** We assume **dynamic arrays**, i. e., expand by doubling as needed. (Amortized over all insertions this takes O(1) extra time.)

Using unsorted linked lists is identical. *PQ-sort* with this realization yields *selection sort*.

Realization 2: sorted arrays

- insert: O(n)
- deleteMax: O(1)

Using sorted linked lists is identical. *PQ-sort* with this realization yields *insertion sort*.

# Outline

#### Priority Queues

- Abstract Data Types
- ADT Priority Queue

#### • Binary Heaps

- Operations in Binary Heaps
- PQ-sort and Heapsort
- Towards the Selection Problem

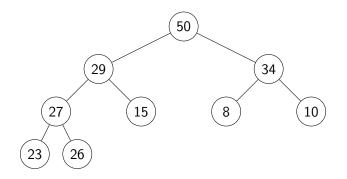
### Realization 3: Heaps

A (binary) heap is a certain type of binary tree.

You should know:

- A binary tree is either
  - empty, or
  - consists of three parts:
     a node and two binary trees (left subtree and right subtree).
- Terminology: root, leaf, parent, child, level, sibling, ancestor, descendant, etc.
- Any binary tree with *n* nodes has height at least  $\log(n+1) 1 \in \Omega(\log n)$ .

## Example Heap



In our examples we only show the priorities, and we show them directly in the node. A more accurate picture would be (m) (priority = 50, <other info>)

## Heaps – Definition

A heap is a binary tree with the following two properties:

- Structural Property: All the levels of a heap are completely filled, except (possibly) for the last level. The filled items in the last level are *left-justified*.
- Heap-order Property: For any node *i*, the key of the parent of *i* is larger than or equal to key of *i*.

## Heaps – Definition

A heap is a binary tree with the following two properties:

- Structural Property: All the levels of a heap are completely filled, except (possibly) for the last level. The filled items in the last level are *left-justified*.
- Heap-order Property: For any node *i*, the key of the parent of *i* is larger than or equal to key of *i*.

The full name for this is *max-oriented binary heap*.

## Heaps – Definition

A heap is a binary tree with the following two properties:

- Structural Property: All the levels of a heap are completely filled, except (possibly) for the last level. The filled items in the last level are *left-justified*.
- Heap-order Property: For any node *i*, the key of the parent of *i* is larger than or equal to key of *i*.

The full name for this is *max-oriented binary heap*.

**Lemma**: The height of a heap with *n* nodes is  $\Theta(\log n)$ .

# Storing Heaps in Arrays

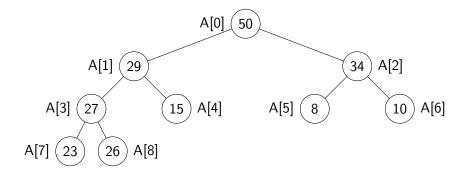
Heaps should *not* be stored as binary trees!

Let *H* be a heap of *n* items and let *A* be an array of size *n*. Store root in A[0] and continue with elements *level-by-level* from top to bottom, in each level left-to-right.

# Storing Heaps in Arrays

Heaps should *not* be stored as binary trees!

Let *H* be a heap of *n* items and let *A* be an array of size *n*. Store root in A[0] and continue with elements *level-by-level* from top to bottom, in each level left-to-right.



## Heaps in Arrays - Navigation

It is easy to navigate the heap using this array representation:

- the root node is at index 0 (We use "node" and "index" interchangeably in this implementation.)
- the *last* node is n 1 (where *n* is the size)
- the *left child* of node *i* (if it exists) is node 2i + 1
- the *right child* of node *i* (if it exists) is node 2i + 2
- the *parent* of node *i* (if it exists) is node  $\lfloor \frac{i-1}{2} \rfloor$
- $\bullet$  these nodes exist if the index falls in the range  $\{0,\ldots,n{-}1\}$

## Heaps in Arrays - Navigation

It is easy to navigate the heap using this array representation:

- the *root* node is at index 0 (We use "node" and "index" interchangeably in this implementation.)
- the *last* node is n 1 (where *n* is the size)
- the *left child* of node *i* (if it exists) is node 2i + 1
- the *right child* of node *i* (if it exists) is node 2i + 2
- the *parent* of node *i* (if it exists) is node  $\lfloor \frac{i-1}{2} \rfloor$
- $\bullet$  these nodes exist if the index falls in the range  $\{0,\ldots,n{-}1\}$

We should hide implementation details using helper-functions!

• functions root(), last(), parent(i), etc.

Some of these helper-functions need to know n (but we omit this in the code for simplicity).

# Outline

#### Priority Queues

- Abstract Data Types
- ADT Priority Queue
- Binary Heaps
- Operations in Binary Heaps
- PQ-sort and Heapsort
- Towards the Selection Problem

## Insert in Heaps

- Place the new key at the first free leaf
- The heap-order property might be violated: perform a *fix-up*:

## Insert in Heaps

- Place the new key at the first free leaf
- The heap-order property might be violated: perform a *fix-up*:

```
\begin{array}{ll} \textit{fix-up}(A, i) \\ i: \textit{ an index corresponding to a node of the heap} \\ 1. & \textbf{while } \textit{parent}(i) \textit{ exists and } A[\textit{parent}(i)].\textit{key} < A[i].\textit{key do} \\ 2. & \textit{swap } A[i] \textit{ and } A[\textit{parent}(i)] \\ 3. & i \leftarrow \textit{parent}(i) \end{array}
```

The new item "bubbles up" until it reaches its correct place in the heap.

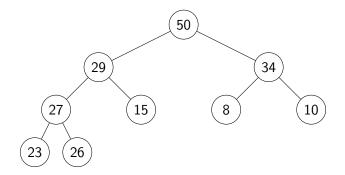
## Insert in Heaps

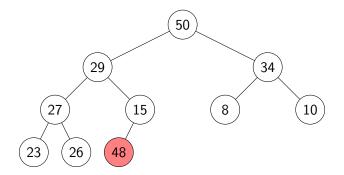
- Place the new key at the first free leaf
- The heap-order property might be violated: perform a *fix-up*:

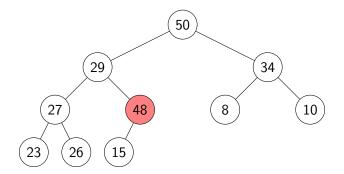
$$\begin{array}{ll} \textit{fix-up}(A, i) \\ i: \text{ an index corresponding to a node of the heap} \\ 1. & \textbf{while } \textit{parent}(i) \text{ exists } \textbf{and } A[\textit{parent}(i)].\textit{key} < A[i].\textit{key } \textbf{do} \\ 2. & \text{swap } A[i] \text{ and } A[\textit{parent}(i)] \\ 3. & i \leftarrow \textit{parent}(i) \end{array}$$

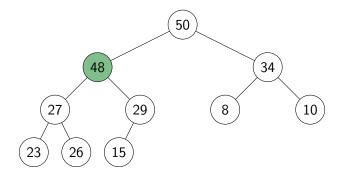
The new item "bubbles up" until it reaches its correct place in the heap.

```
Time: O(\text{height of heap}) = O(\log n).
```









## deleteMax in Heaps

- The maximum item of a heap is just the root node.
- We replace root by the last leaf (last leaf is taken out).
- The heap-order property might be violated: perform a *fix-down*:

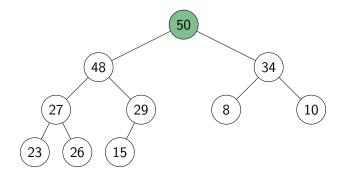
# deleteMax in Heaps

- The maximum item of a heap is just the root node.
- We replace root by the last leaf (last leaf is taken out).
- The heap-order property might be violated: perform a *fix-down*:

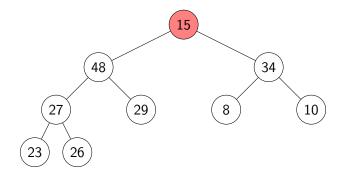
```
fix-down(A, i, n \leftarrow A.size)
A: an array that stores a heap of size n
i: an index corresponding to a node of the heap
       while i is not a leaf do
1.
2.
            i \leftarrow left child of i = // Find the child with the larger key
3.
            if (i has right child and A[right child of i]. key > A[j]. key)
                i \leftarrow \text{right child of } i
4.
5. if A[i].key \geq A[j].key break
           swap A[i] and A[i]
6.
7.
           i \leftarrow i
```

Time:  $O(\text{height of heap}) = O(\log n)$ .

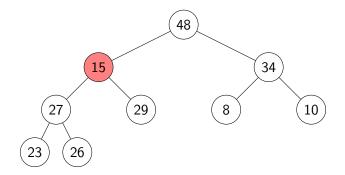
### deleteMax example



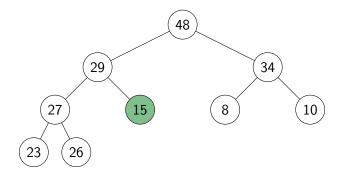
### deleteMax example



#### deleteMax example



#### deleteMax example



# Priority Queue Realization Using Heaps

• Store items in array A and globally keep track of size

insert(x) 1. increase size 2.  $\ell \leftarrow last()$ 3.  $A[\ell] \leftarrow x$ 4. fix- $up(A, \ell)$ 

deleteMax()1.  $\ell \leftarrow last()$ 2.  $swap A[root()] \text{ and } A[\ell]$ 3. decrease size4. fix-down(A, root(), size)5.  $return A[\ell]$ 

#### insert and deleteMax: $O(\log n)$ time

Biedl, Schost, Veksler (SCS, UW)

CS240 – Module 2

## Outline

#### Priority Queues

- Abstract Data Types
- ADT Priority Queue
- Binary Heaps
- Operations in Binary Heaps
- PQ-sort and Heapsort
- Towards the Selection Problem

## Sorting using heaps

• Recall: Any priority queue can be used to sort in time

 $O(initialization + n \cdot insert + n \cdot deleteMax)$ 

• Using the binary-heaps implementation of PQs, we obtain:

PQsortWithHeaps(A)1.initialize H to an empty heap2.for  $i \leftarrow 0$  to n-1 do3.H.insert(A[i])4.for  $i \leftarrow n-1$  down to 0 do5. $A[i] \leftarrow H.deleteMax()$ 

## Sorting using heaps

• Recall: Any priority queue can be used to sort in time

 $O(initialization + n \cdot insert + n \cdot deleteMax)$ 

• Using the binary-heaps implementation of PQs, we obtain:

```
PQsortWithHeaps(A)1.initialize H to an empty heap2.for i \leftarrow 0 to n-1 do3.H.insert(A[i])4.for i \leftarrow n-1 down to 0 do5.A[i] \leftarrow H.deleteMax()
```

- both operations run in  $O(\log n)$  time for heaps
- $\rightsquigarrow$  *PQ-Sort* using heaps takes  $O(n \log n)$  time.
  - $\bullet\,$  Can improve this with two simple tricks  $\to$  Heapsort
    - Heaps can be built faster if we know all input in advance.
    - 2 Can use the same array for input and heap.  $\rightarrow O(1)$  auxiliary space!

CS240 – Module 2

Winter 2021

## Building Heaps with Fix-up

**Problem:** Given *n* items all at once (in  $A[0 \cdots n - 1]$ ) build a heap containing all of them.

## Building Heaps with Fix-up

**Problem:** Given *n* items all at once (in  $A[0 \cdots n - 1]$ ) build a heap containing all of them.

**Solution 1:** Start with an empty heap and insert items one at a time:

```
\begin{array}{ll} simpleHeapBuilding(A) \\ A: \ an \ array \\ 1. & \ initialize \ H \ as \ an \ empty \ heap \\ 2. & \ \mathbf{for} \ i \leftarrow 0 \ \mathbf{to} \ A.size() - 1 \ \mathbf{do} \\ 3. & \ H.insert(A[i]) \end{array}
```

## Building Heaps with Fix-up

**Problem:** Given *n* items all at once (in  $A[0 \cdots n - 1]$ ) build a heap containing all of them.

**Solution 1:** Start with an empty heap and insert items one at a time:

```
\begin{array}{ll} simpleHeapBuilding(A) \\ A: \ an \ array \\ 1. & initialize \ H \ as \ an \ empty \ heap \\ 2. & \textbf{for} \ i \leftarrow 0 \ \textbf{to} \ A.size() - 1 \ \textbf{do} \\ 3. & H.insert(A[i]) \end{array}
```

This corresponds to doing *fix-ups* Worst-case running time:  $\Theta(n \log n)$ .

## Building Heaps with Fix-down

**Problem:** Given *n* items all at once (in  $A[0 \cdots n - 1]$ ) build a heap containing all of them.

## Building Heaps with Fix-down

**Problem:** Given *n* items all at once (in  $A[0 \cdots n - 1]$ ) build a heap containing all of them.

Solution 2: Using *fix-downs* instead:

 $\begin{array}{ll} heapify(A) \\ A: \ an \ array \\ 1. \quad n \leftarrow A.size() \\ 2. \quad \text{for } i \leftarrow parent(last()) \ \text{downto } root() \ \text{do} \\ 3. \qquad fix-down(A, i, n) \end{array}$ 

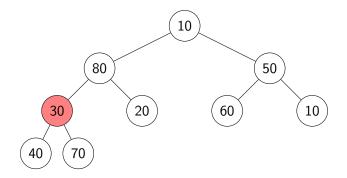
## Building Heaps with Fix-down

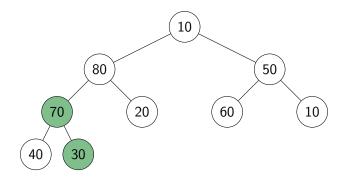
**Problem:** Given *n* items all at once (in  $A[0 \cdots n - 1]$ ) build a heap containing all of them.

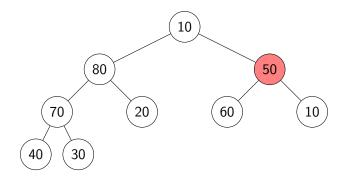
**Solution 2:** Using *fix-downs* instead:

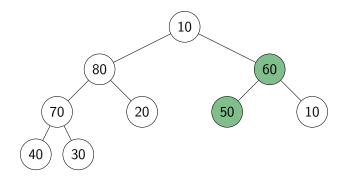
 $\begin{array}{ll} heapify(A) \\ A: \ an \ array \\ 1. \quad n \leftarrow A.size() \\ 2. \quad \textbf{for} \ i \leftarrow parent(last()) \ \textbf{downto} \ root() \ \textbf{do} \\ 3. \qquad fix-down(A, i, n) \end{array}$ 

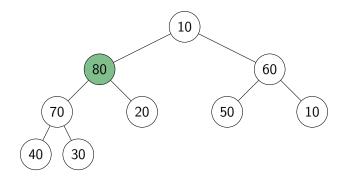
A careful analysis yields a worst-case complexity of  $\Theta(n)$ . A heap can be built in linear time.

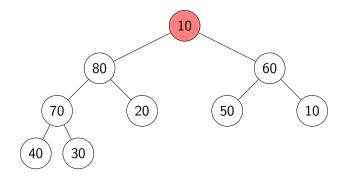


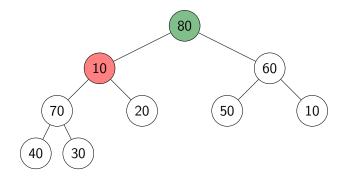


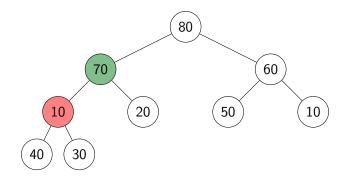


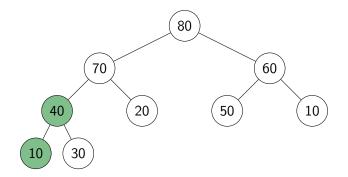










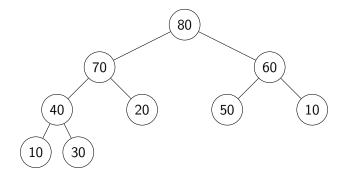


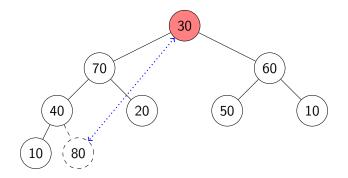
# HeapSort

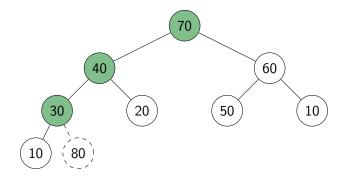
- Idea: *PQ-sort* with heaps.
- O(1) auxiliary space: Use same input-array A for storing heap.

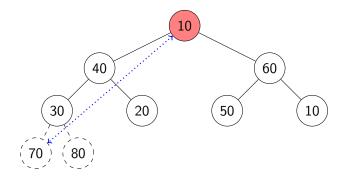
```
HeapSort(A, n)
1. // heapify
2. n \leftarrow A.size()
3. for i \leftarrow parent(last()) downto 0 do
           fix-down(A, i, n)
4.
// repeatedly find maximum
6.
   while n > 1
7.
          // 'delete' maximum by moving to end and decreasing n
          swap items at A[root()] and A[last()]
8.
9.
          decrease n
       fix-down(A, root(), n)
10.
```

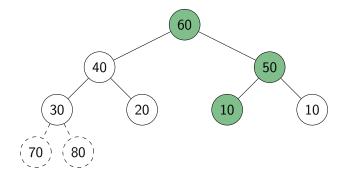
The for-loop takes  $\Theta(n)$  time and the while-loop takes  $O(n \log n)$  time.

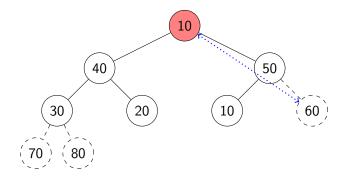


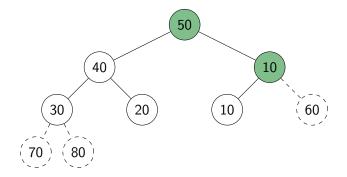


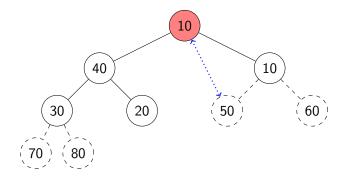


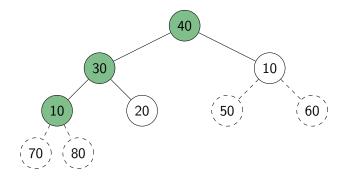


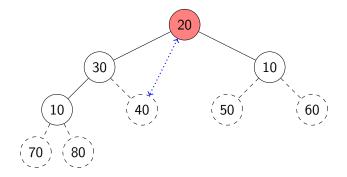


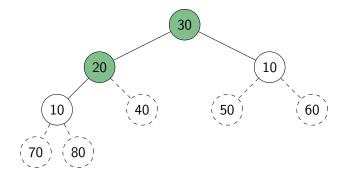


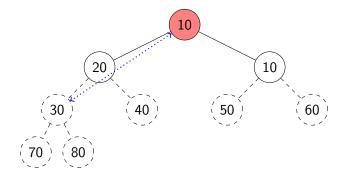


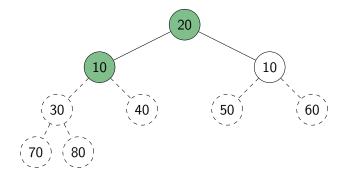


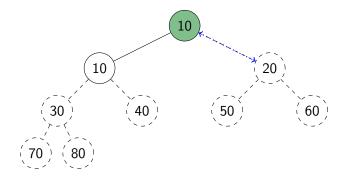




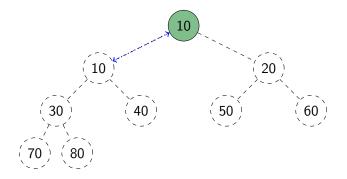








Continue with the example from heapify:



The array (i.e., the heap in level-by-level order) is now in sorted order.

#### Heap summary

- **Binary heap**: A binary tree that satisfies structural property and heap-order property.
- Heaps are one possible realization of ADT PriorityQueue:
  - insert takes time O(log n)
  - deleteMax takes time O(log n)
  - Also supports *findMax* in time O(1)
- A binary heap can be built in linear time.
- *PQ-sort* with binary heaps leads to a sorting algorithm with O(n log n) worst-case run-time (→ HeapSort)
- We have seen here the *max-oriented version* of heaps (the maximum priority is at the root).
- There exists a symmetric *min-oriented version* that supports *insert* and *deleteMin* with the same run-times.

## Outline

#### Priority Queues

- Abstract Data Types
- ADT Priority Queue
- Binary Heaps
- Operations in Binary Heaps
- PQ-sort and Heapsort

#### • Towards the Selection Problem

## Finding the largest items

**Problem:** Find the *kth largest item* in an array A of *n* distinct numbers.

**Solution 1:** Make *k* passes through the array, deleting the maximum number each time. Complexity:  $\Theta(kn)$ .

**Solution 2:** Sort *A*, then return A[n-k]. Complexity:  $\Theta(n \log n)$ .

**Solution 3:** Scan the array and maintain the k largest numbers seen so far in a min-heap Complexity:  $\Theta(n \log k)$ .

**Solution 4:** Create a max-heap with *heapify*(A). Call *deleteMax*(A) k times.

Complexity:  $\Theta(n + k \log n)$ .