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Scapegoat trees

Can we have balanced binary search trees without rotations?
(A later application will need such a tree.)
This sounds impossible—we must sometimes restructure the tree.
Idea: Rather than doing a small local change, occasionally do a large
(near-global) rebuilt.

With the right setup, this will lead to O(log n) height and O(log n)
amortized time for all operations.
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Scapegoat trees
Fix a constant α with 1

2 < α < 1. A scapegoat tree is a binary search
tree where any node v with a parent satisfies

v .size ≤ α · v .parent.size.
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(
Lower number = subtree-size.
In our examples, α = 2

3 .

)

v .size needed during updates  must be stored
Any subtree is a constant fraction smaller  height O(log n).
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Scapegoat tree operations

search: As for a binary search tree. O(height) = O(log n).
For insert and delete, occasionally restructure a subtree into a
perfectly balanced tree:

|size(z .left)− size(z .right)| ≤ 1 for all nodes z .

Do this at the highest node where the size-condition of scapegoat
trees is violated

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 4 Winter 2021 4 / 13



Scapegoat Tree Insertion Example

Example: Scapegoat::insert(60)
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Scapegoat Tree Insertion Example

Example: Scapegoat::insert(50)
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Scapegoat tree insertion

scapegoatTree::insert(k, v)
1. z ← BST::insert(k, v)
2. S ← stack initialized with z
3. while (p ← z .parent 6= NIL) // update sizes, get path
4. increase p.size
5. S.push(p)
6. z ← p
7. while (S.size ≥ 2) // size-condition violated?
8. p ← P.pop()
9. if (p.size < α ·max{p.left.size, p.right.size})
10. rebuild subtree at p into perfectly balanced tree
11. return

Rebuilding at p (line 10) can be done in O(p.size) time (exercise).
This restores scapegoat tree (we rebuild at the highest violation).
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Detour: Amortized analysis

As for dynamic arrays and lazy deletion, we have the following pattern:
usually the operation is fast,
the occasional operation is quite slow.

The worst-case run-time bound here would not reflect that overall this
works quite well.

Instead, try to find an amortized run-time bound: A bound that holds if
we add the bounds up over all operations.

k∑
i=1

T actual(Oi ) ≤
k∑

i=1
T amort(Oi ).

(where O1, . . . ,Ok is any feasible sequence of operations, T actual(·) is the actual
run-time, and T amort(·) is the amortized run-time (or an upper bound for it).
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Detour: Amortized analysis
For dynamic arrays, some ad-hoc methods work.

40 20
insert

40 20 90
insert

40 20 90 60
rebuild

40 20 90 60

Direct argument:
I n/2 fast inserts takes Θ(1) time each.
I Then one slow insert takes Θ(n).
I Averaging out therefore Θ(1) per operation.
I This is doing math with asymptotic notation - dangerous.

Explicitly define T amort(·) and verify.
I Set time units such that T actual(insert) ≤ 1 and T actual(resize) ≤ n.
I Define T amort(insert) = 3 and T amort(resize) = 0.

Verify
∑k

i=1 T actual(Oi ) ≤
≤
∑k

i=1 T amort(Oi ).
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Potential function method

Usually we need more systematic methods.

Potential function: A function Φ(·) that depends on the current
status of the data structure.

I E.g.: Φ(i) = max{0, 2 · size− capacity} for dynamic arrays.
I “i” = operations O1, . . . ,Oi have been executed.

Potential function must satisfy: Φ(0) = 0, Φ(i) ≥ 0 for all i .
I Can verify this for dynamic-array function above.

Define T amort(Oi ) = T actual(Oi ) + Φ(i)− Φ(i − 1)

I Often we just write T amort(O) = T actual(O) + Φafter − Φbefore

Lemma: This satisfies
∑

i T actual(Oi ) ≤
∑

i T amort(Oi ).
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Example: Dynamic arrays
40 20

insert
40 20 90

insert
40 20 90 60

rebuild
40 20 90 60

Potential function Φ(i) = max{0, 2 · size− capacity}
As before set time units such that

T actual(insert) ≤ 1 and T actual(resize) ≤ n.

insert increases size, does not change capacity
⇒ ∆Φ = Φafter − Φbefore ≤ 2− 0 = 2

T amort(insert) ≤ 1 + 2− 0 = 3 ∈ O(1)

rebuild happens only if size = capacity = n
⇒ Φbefore = 2n − n = n.
⇒ Φafter = 2n − 2n = 0 since new capacity is 2n.

T amort(insert) ≤ n + 0− n = 0 ∈ O(1)

Result: The amortized run-time of dynamic arrays is O(1).
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Potential function method

How to find a suitable potential function?
(No recipe, but some guidelines.)

Study the expensive operation: What gets smaller?
40 20 90 60

rebuild
40 20 90 60

I Dynamic arrays: rebuild increases capacity.
We want the potential function to get smaller.
So potential function should have term “−capacity.

Study condition Φ(·) ≥ 0 and Φ(0) = 0.
I Dynamic arrays: Usually have capacity ≤ 2 · size.

So usually 2 · size− capactiy ≥ 0,
I We added a max{0, . . . } term so that also Φ(0) = 0.

Compute the amortized time and see whether you get good bounds.
Rinse, lather, repeat.
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Amortized analysis of scapegoat trees

Expensive operation: Rebuild subtree at p.
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Claim: If we rebuild at p, then |nr − n`| ≥ (2α− 1)np.
Proof:

Idea: Potential function should involve
∑

v |v .left.size− v .right.size|.
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Amortized analysis of scapegoat trees

Use Φ(i) = c ·
∑

v max{|v .left− v .right| − 1, 0} for some constant c.

insert and delete increases contribution at ancestors by at most 1
and does not increase other contributions.

T amort(insert) = T actual (insert) + Φafter − Φbefore

≤ log n + c#{ancestors} ∈ O(log n)

rebuild decreases contribution at p by (2α− 1)np
and does not increase other contributions.

T amort(rebuild) = T actual (rebuild) + Φafter − Φbefore

≤ np + c(−(2α− 1)np)

With c = 1/(2α− 1), this is at most 0 and rebuild is free.

Result: All operations have amortized run-time in O(log n).
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