CS 240 – Data Structures and Data Management

Module 6E: Dictionaries for special keys - Enriched

T. Biedl É. Schost O. Veksler Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-02-10 12:29

- Had: Average-case run-time of *interpolation-search* is $O(\log \log n)$.
- This is very complicated to prove!
 - Study error, i.e., distance between index of k and where we probed.
 Argue that error is in O(√n) in first round.
 Argue that error is in O(¹/₂n) after i rounds.
 Study the martingale formed by the errors in the rounds.
 Argue that its expected length is O(log log n).
- Instead: Define a variant of *interpolatation-search*
 - Better worst-case run-time.
 - Easier to analyze.
- Idea: *Force* the sub-array to have size \sqrt{n}
- To do so, search for suitable sub-array with probes.
- Crucial question: how many probes are needed?

• First compare at *m* as before.

- First compare at *m* as before.
- If $A[m] \leq k$, probe rightward.
- Probes always go $\lfloor \sqrt{N} \rfloor$ indices rightward (where $N = r - \ell$ is the size of the sub-array where k could be)

- First compare at *m* as before.
- If $A[m] \leq k$, probe rightward.
- Probes always go [√N] indices rightward (where N = r − ℓ is the size of the sub-array where k could be)
- Continue probing until > k or out-of-bounds

- First compare at *m* as before.
- If $A[m] \leq k$, probe rightward.
- Probes always go $\lfloor \sqrt{N} \rfloor$ indices rightward (where $N = r \ell$ is the size of the sub-array where k could be)
- Continue probing until > k or out-of-bounds

- First compare at *m* as before.
- If $A[m] \leq k$, probe rightward.
- Probes always go $\lfloor \sqrt{N} \rfloor$ indices rightward (where $N = r \ell$ is the size of the sub-array where k could be)
- Continue probing until > k or out-of-bounds

• Observe: # probes
$$\leq \frac{N}{\lfloor \sqrt{N} \rfloor} \leq \sqrt{N} + 1.$$

Interpolation-search-modified(A, n, k)A: sorted array of size n, k: key1. if
$$(k < A[0] \text{ or } k > A[n-1])$$
 return "not found"2. if $(k = A[n-1])$ return "found at index $n-1$ "3. $\ell \leftarrow 0, r \leftarrow n-1$ 4. while $(N \leftarrow (r-\ell) \ge 2)$ 5. $m \leftarrow \ell + \frac{k-A[\ell]}{A[r]-A[\ell]} \cdot (r-\ell)$ 6. if $(A[m] \le k)$ 7. $\ell \leftarrow m, m_r \leftarrow \min\{r, m + \lfloor \sqrt{N} \rfloor\}$ 8. while $(m_r < r \text{ and } A[m_r] < k)$ 9. $\ell \leftarrow m_r, m_r \leftarrow \min\{r, m + \lfloor \sqrt{N} \rfloor\}$ 10. $r \leftarrow m_r$ 11. else12. \vdots 13. if $(k = A[\ell])$ return "found at index ℓ "14. else return "not found"

Analysis of interpolation-search-improved

- $T(n) \leq T(\sqrt{n}) + O(\# \text{probes})$
- # probes $\leq \sqrt{n} + 1$.
- The worst-case run-time satisfies

$$T^{\mathrm{worst}}(n) \leq T^{\mathrm{worst}}(\sqrt{n}) + c \cdot (\sqrt{n} + 1)$$

• Show:
$$T^{\text{worst}}(n) \leq \frac{5}{4}c\sqrt{n}$$
 for $n \geq 16$

• Therefore worst-case run-time is $O(\sqrt{n})$.

Analysis of interpolation-search-improved

- What is the number of probes on average?
- Rephrase: If numbers are chosen uniformly at random, what is the expected number of probes?
- Can show: Expected number of probes is in O(1).
- The average-case run-time satisfies

$$T^{\mathrm{avg}}(n) \leq T^{\mathrm{avg}}(\sqrt{n}) + c$$

• Show: $T^{\operatorname{avg}}(n) \leq c \lceil \log \log n \rceil$ for $n \geq 4$.

• Therefore the average-case run-time is $O(\log \log n)$.