CS 240 - Data Structures and Data Management

Module 6E: Dictionaries for special keys - Enriched

T. Biedl É. Schost O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo
Winter 2021

Improving Interpolation Search

- Had: Average-case run-time of interpolation-search is $O(\log \log n)$.
- This is very complicated to prove!
- Study error, i.e., distance between index of k and where we probed.
- Argue that error is in $O(\sqrt{n})$ in first round.
- Argue that error is in $O\left(\frac{1}{2^{\prime}} n\right)$ after i rounds.
- Study the martingale formed by the errors in the rounds.
- Argue that its expected length is $O(\log \log n)$.
- Instead: Define a variant of interpolatation-search
- Better worst-case run-time.
- Easier to analyze.
- Idea: Force the sub-array to have size \sqrt{n}
- To do so, search for suitable sub-array with probes.
- Crucial question: how many probes are needed?

Improving Interpolation Search

m

- First compare at m as before.

Improving Interpolation Search

0	1	2	3	4	5	6	7	8	9	10
$\leq k$										
\uparrow probe										
\boldsymbol{m}										

- First compare at m as before.
- If $A[m] \leq k$, probe rightward.
- Probes always go $\lfloor\sqrt{N}\rfloor$ indices rightward (where $N=r-\ell$ is the size of the sub-array where k could be)

Improving Interpolation Search

0	1	2	3	4	5	6	7	8	9	10
$\leq k$			$\leq k$							
\hat{m}										

- First compare at m as before.
- If $A[m] \leq k$, probe rightward.
- Probes always go $\lfloor\sqrt{N}\rfloor$ indices rightward (where $N=r-\ell$ is the size of the sub-array where k could be)
- Continue probing until $>k$ or out-of-bounds

Improving Interpolation Search

0	1	2	3	4	5	6	7	8	9	10
$\leq k$			$\leq k$			$\leq k$				
¢		probe			$\stackrel{\uparrow}{\text { probe }}$			probe		

- First compare at m as before.
- If $A[m] \leq k$, probe rightward.
- Probes always go $\lfloor\sqrt{N}\rfloor$ indices rightward (where $N=r-\ell$ is the size of the sub-array where k could be)
- Continue probing until $>k$ or out-of-bounds

Improving Interpolation Search

0	1	2	3	4	5	6	7	8	9	10
$\leq k$			$\leq k$			$\leq k$			$>k$	
f		probe				\uparrow use this sub-array \uparrow probe probe				

- First compare at m as before.
- If $A[m] \leq k$, probe rightward.
- Probes always go $\lfloor\sqrt{N}\rfloor$ indices rightward (where $N=r-\ell$ is the size of the sub-array where k could be)
- Continue probing until $>k$ or out-of-bounds
- Observe: $\#$ probes $\leq \frac{N}{\lfloor\sqrt{N}\rfloor} \leq \sqrt{N}+1$.

Improving Interpolation Search

Interpolation-search-modified (A, n, k)

A : sorted array of size n, k : key

1. if $(k<A[0]$ or $k>A[n-1])$ return "not found"
2. if $(k=A[n-1])$ return"found at index $n-1$ "
3. $\quad \ell \leftarrow 0, r \leftarrow n-1 \quad$ // have $A[\ell] \leq k<A[r]$
4. while $(N \leftarrow(r-\ell) \geq 2)$
5. $\quad m \leftarrow \ell+\frac{k-A[\ell]}{A[r]-A[\ell]} \cdot(r-\ell)$
6. if $(A[m] \leq k)$
// probe rightward
7. $\quad \ell \leftarrow m, m_{r} \leftarrow \min \{r, m+\lfloor\sqrt{N}\rfloor\}$
8.
9.

while ($m_{r}<r$ and $A\left[m_{r}\right]<k$) $\ell \leftarrow m_{r}, m_{r} \leftarrow \min \{r, m+\lfloor\sqrt{N}\rfloor\}$
10.
11.
$r \leftarrow m_{r}$
// found suitable sub-array
12. $\quad \vdots \quad / /$ symmetrically probe leftward
13. if $(k=A[\ell])$ return "found at index ℓ "
14. else return "not found"

Analysis of interpolation-search-improved

- $T(n) \leq T(\sqrt{n})+O$ (\#probes)
- \# probes $\leq \sqrt{n}+1$.
- The worst-case run-time satisfies

$$
T^{\text {worst }}(n) \leq T^{\text {worst }}(\sqrt{n})+c \cdot(\sqrt{n}+1)
$$

- Show: $T^{\text {worst }}(n) \leq \frac{5}{4} c \sqrt{n}$ for $n \geq 16$
- Therefore worst-case run-time is $O(\sqrt{n})$.

Analysis of interpolation-search-improved

- What is the number of probes on average?
- Rephrase: If numbers are chosen uniformly at random, what is the expected number of probes?
- Can show: Expected number of probes is in $O(1)$.
- The average-case run-time satisfies

$$
T^{\mathrm{avg}}(n) \leq T^{\mathrm{avg}}(\sqrt{n})+c
$$

- Show: $T^{\text {avg }}(n) \leq c\lceil\log \log n\rceil$ for $n \geq 4$.
- Therefore the average-case run-time is $O(\log \log n)$.

