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Improving Interpolation Search

Had: Average-case run-time of interpolation-search is O(log log n).
This is very complicated to prove! I Study error, i.e., distance between index of k and where we probed.

I Argue that error is in O(
√
n) in first round.

I Argue that error is in O( 1
2i n) after i rounds.

I Study the martingale formed by the errors in the rounds.
I Argue that its expected length is O(log log n).


Instead: Define a variant of interpolatation-search

I Better worst-case run-time.
I Easier to analyze.

Idea: Force the sub-array to have size
√
n

To do so, search for suitable sub-array with probes.
Crucial question: how many probes are needed?
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Improving Interpolation Search
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↑
probe

> k
use this sub-array

First compare at m as before.

If A[m] ≤ k, probe rightward.
Probes always go b

√
Nc indices rightward

(where N = r − ` is the size of the sub-array where k could be)
Continue probing until > k or out-of-bounds
Observe: # probes ≤ N

b
√

Nc ≤
√
N + 1.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 6E Winter 2021 3 / 6



Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10

↑m

≤ k

↑
probe

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First compare at m as before.
If A[m] ≤ k, probe rightward.
Probes always go b

√
Nc indices rightward

(where N = r − ` is the size of the sub-array where k could be)

Continue probing until > k or out-of-bounds
Observe: # probes ≤ N

b
√

Nc ≤
√
N + 1.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 6E Winter 2021 3 / 6



Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10

↑m

≤ k

↑
probe

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First compare at m as before.
If A[m] ≤ k, probe rightward.
Probes always go b

√
Nc indices rightward

(where N = r − ` is the size of the sub-array where k could be)
Continue probing until > k or out-of-bounds

Observe: # probes ≤ N
b
√

Nc ≤
√
N + 1.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 6E Winter 2021 3 / 6



Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10

↑m

≤ k

↑
probe

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First compare at m as before.
If A[m] ≤ k, probe rightward.
Probes always go b

√
Nc indices rightward

(where N = r − ` is the size of the sub-array where k could be)
Continue probing until > k or out-of-bounds

Observe: # probes ≤ N
b
√

Nc ≤
√
N + 1.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 6E Winter 2021 3 / 6



Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10

↑m

≤ k

↑
probe

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First compare at m as before.
If A[m] ≤ k, probe rightward.
Probes always go b

√
Nc indices rightward

(where N = r − ` is the size of the sub-array where k could be)
Continue probing until > k or out-of-bounds
Observe: # probes ≤ N

b
√

Nc ≤
√
N + 1.

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 6E Winter 2021 3 / 6



Improving Interpolation Search
Interpolation-search-modified(A, n, k)
A: sorted array of size n, k: key
1. if (k < A[0] or k > A[n − 1]) return “not found”
2. if (k = A[n − 1]) return“found at index n−1”
3. `← 0, r ← n − 1 // have A[`] ≤ k < A[r ]
4. while (N ← (r − `) ≥ 2)
5. m← ` + k−A[`])

A[r ]−A[`] · (r − `)

6. if (A[m] ≤ k) // probe rightward
7. `← m,mr ← min{r ,m + b

√
Nc}

8. while (mr < r and A[mr ] < k)
9. `← mr , mr ← min{r ,m + b

√
Nc}

10. r ← mr // found suitable sub-array
11. else

12.
... // symmetrically probe leftward

13. if (k = A[`]) return “found at index `”
14. else return “not found”

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 6E Winter 2021 4 / 6



Analysis of interpolation-search-improved

T (n) ≤ T (
√
n) + O(#probes)

# probes ≤
√
n + 1.

The worst-case run-time satisfies

Tworst(n) ≤ Tworst(
√
n) + c · (

√
n + 1)

Show: Tworst(n) ≤ 5
4c
√
n for n ≥ 16

Therefore worst-case run-time is O(
√
n).
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Analysis of interpolation-search-improved
What is the number of probes on average?
Rephrase: If numbers are chosen uniformly at random, what is the
expected number of probes?
Can show: Expected number of probes is in O(1).
The average-case run-time satisfies

T avg(n) ≤ T avg(
√
n) + c

Show: T avg(n) ≤ cdlog log ne for n ≥ 4.

Therefore the average-case run-time is O(log log n).
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