CS 240 - Data Structures and Data Management

Module 8: Range-Searching - Enriched

T. Biedl É. Schost O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo
Winter 2021

Outline

(1) Boundary nodes in kd-trees
(2) 3-sided range search

Bounday nodes in kd-trees

Recall: $Q(n)$ are the boundary-nodes (blue).
Goal: $Q(n) \in O(\sqrt{n})$.

Observation: If v is a boundary-node, then its associated region intersects one of the lines $\ell_{W}, \ell_{N}, \ell_{E}, \ell_{S}$ that support the query-rectangle.

Boundary nodes in kd-trees

$$
Q(n, \ell):=\max _{\text {kd-trees }} \max _{n \text { points }}
$$

number of associated regions that intersect a given line ℓ

This is independent of ℓ (shift points), so only consider whether ℓ is horizontal or vertical $\rightsquigarrow Q_{v}(n), Q_{h}(n)$

$$
\begin{aligned}
Q(n) & \leq Q\left(n, \ell_{W}\right)+Q\left(n, \ell_{N}\right)+Q\left(n, \ell_{E}\right)+Q\left(n, \ell_{S}\right) \\
& \leq 2 Q_{\nu}(n)+2 Q_{h}(n)
\end{aligned}
$$

Boundary nodes in kd-trees

Goal: $\quad Q_{v}(n) \leq 2 Q_{v}(n / 4)+2$.

Boundary nodes in kd-trees

Goal: $\quad Q_{v}(n) \leq 2 Q_{v}(n / 4)+2$.

Boundary nodes in kd-trees

Goal: $\quad Q_{v}(n) \leq 2 Q_{v}(n / 4)+2$.

Boundary nodes in kd-trees

- $Q_{v}(n) \leq 2 Q_{v}(n / 4)+2$
$\Rightarrow Q_{v}(n) \in O(\sqrt{n})$

Boundary nodes in kd-trees

- $Q_{v}(n) \leq 2 Q_{v}(n / 4)+2$

$$
\Rightarrow Q_{v}(n) \in O(\sqrt{n})
$$

- Similarly: $Q_{h}(n) \leq 2 Q_{h}(n / 4)+3 \quad \Rightarrow Q_{h}(n) \in O(\sqrt{n})$

Boundary nodes in kd-trees

- $Q_{v}(n) \leq 2 Q_{v}(n / 4)+2$

$$
\Rightarrow Q_{v}(n) \in O(\sqrt{n})
$$

- Similarly: $Q_{h}(n) \leq 2 Q_{h}(n / 4)+3 \quad \Rightarrow Q_{h}(n) \in O(\sqrt{n})$
- $Q(n) \leq 2 Q_{v}(n)+2 Q_{h}(n) \in O(\sqrt{n})$

Theorem: In a range-query in a kd-tree (of points in general position) there are $O(\sqrt{n})$ boundary-nodes.

Boundary nodes in kd-trees

- $Q_{v}(n) \leq 2 Q_{v}(n / 4)+2$
- Similarly: $Q_{h}(n) \leq 2 Q_{h}(n / 4)+3 \quad \Rightarrow Q_{h}(n) \in O(\sqrt{n})$
- $Q(n) \leq 2 Q_{v}(n)+2 Q_{h}(n) \in O(\sqrt{n})$

Theorem: In a range-query in a kd-tree (of points in general position) there are $O(\sqrt{n})$ boundary-nodes.

- So range-search takes $O(\sqrt{n}+s)$ time.
- Note: It is crucial that we have $\approx n / 4$ points in each grand-child of the root.

3-sided range search

Consider a special kind of range-search:
3sidedRangeSearch $\left(x_{1}, x_{2}, y^{\prime}\right)$: return (x, y) with $x_{1} \leq x \leq x_{2}$ and $y \geq y^{\prime}$.

Can we adapt previous ideas to achieve $O(n)$ space and fast range-search time?

Idea 1: Associated heaps

- Primary tree: balanced binary search tree.
- Associated tree: binary heap.
- Space: $\Theta(n \log n)$.
- Range-search time?

Idea 1: Associated heaps - 3-sided range search

Idea 1: Associated heaps - 3-sided range search

- Search in primary as before.

Idea 1: Associated heaps - 3-sided range search

- Search in primary as before.
- In associated heap: Search by y-coordinate in $O(1+s)$ time. (Exercise.)

Idea 1: Associated heaps - 3-sided range search

- Search in primary as before.
- In associated heap: Search by y-coordinate in $O(1+s)$ time. (Exercise.)
- Total time: $O(\log n+s)$
- But space is $\omega(n)$

Idea 2: Treaps

Recall: Treap $=$ binary search tree (with respect to keys)

+ heap (with respect to priorities)

Idea: Use x-coordinate as key, y-coordinate as priority. Space: $\Theta(n)$.

Idea 2: Treaps - 3-sided range search Treap::3-sided-range-search($T, 28,47,36$) :

- BST::range-search $\left(x_{1}, x_{2}\right)$ to get boundary and topmost inside nodes.

Idea 2: Treaps - 3-sided range search Treap::3-sided-range-search($T, 28,47,36$) :

- BST::range-search $\left(x_{1}, x_{2}\right)$ to get boundary and topmost inside nodes.
- Boundary-nodes: Explicitly test whether in x-range and y-range.

Idea 2: Treaps - 3-sided range search Treap::3-sided-range-search($T, 28,47,36$) :

- BST::range-search $\left(x_{1}, x_{2}\right)$ to get boundary and topmost inside nodes.
- Boundary-nodes: Explicitly test whether in x-range and y-range.
- Topmost inside-nodes: If $y \geq y_{1}$, report and recurse in children.

Idea 2: Treaps - 3-sided range search Treap::3-sided-range-search($T, 28,47,36$) :

- BST::range-search $\left(x_{1}, x_{2}\right)$ to get boundary and topmost inside nodes.
- Boundary-nodes: Explicitly test whether in x-range and y-range.
- Topmost inside-nodes: If $y \geq y_{1}$, report and recurse in children.

Idea 2: Treaps - 3-sided range search

Run-time for 3 -sided range search in treaps:

- BST::range-search $\left(x_{1}, x_{2}\right)-O$ (height) since we do not report points.
- Testing boundary-nodes: O (height)
- Testing heap: $O\left(1+s_{v}\right)$ per topmost inside-node v
$\Rightarrow O($ height $+s)$ run-time, $O(n)$ space
But: No guarantees on the height of the treap (not even in expectation) since we cannot choose priorities.

Idea 3: Priority search trees

- Design a new data structure
- Keep good aspects of treap (store y-coordinates in heap-order)
- Keep good aspects of kd-tree (split in half by x-coordinate)

Key idea: The x-coordinate stored for splitting can be different from the x-coordinate of the stored point.

Idea 3: Priority search trees

- every node v stores a point $p_{v}=\left(x_{v}, y_{v}\right)$,
- y_{v} is the maximum y-coordinate in subtree (heap-property!)
- every non-leaf v stores an x-coordinate x_{v}^{\prime} (split-line)
- Every point p in left subtree has $p . x<x_{v}^{\prime}$
- Every point p in right subtree has $p . x \geq x_{v}^{\prime}$
- x_{v}^{\prime} is chosen so that tree is balanced \Rightarrow height $O(\log n)$.

Idea 3: Priority search trees

- Construction: $O(n \log n)$ time (exercise)
- search: $O(\log n)$ time
- Get search-path by following split-lines, check all nodes on path
- insert, delete: Re-balancing is difficult, but can be done (no details).
- 3-sided range search: As in treaps, but height now $O(\log n)$.
- Run-time $O(\log n+s)$

3-sided range search summary

- Idea 1: Scapegoat tree + associated heaps
$O(\log n+s)$ time for range search, but $\omega(n)$ space.
- Idea 2: Treaps
$O(n)$ space, but range search takes $O($ height $+s)$, could be slow
- Idea 3: Priority search tree $O(n)$ space, $O(\log n+s)$ time for range search.

Sometimes it pays to design purpose-built data structures.

