CS 240 - Data Structures and Data Management

Module 8: Range-Searching - Enriched

T. Biedl É. Schost O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

Outline

Boundary nodes in kd-trees

2 3-sided range search

Recall: Q(n) are the boundary-nodes (blue).

Goal: $Q(n) \in O(\sqrt{n})$.

Observation: If v is a boundary-node, then its associated region intersects one of the lines $\ell_W, \ell_N, \ell_E, \ell_S$ that support the query-rectangle.

$$Q(n,\ell) := \max_{\text{kd-trees with } n \text{ points}}$$

number of associated regions that intersect a given line $\boldsymbol{\ell}$

This is independent of ℓ (shift points), so only consider whether ℓ is horizontal or vertical $\rightsquigarrow Q_{\nu}(n), Q_{h}(n)$

$$Q(n) \leq Q(n,\ell_W) + Q(n,\ell_N) + Q(n,\ell_E) + Q(n,\ell_S)$$

$$\leq 2Q_V(n) + 2Q_h(n)$$

Goal:
$$Q_{\nu}(n) \leq 2Q_{\nu}(n/4) + 2$$
.

Goal: $Q_{\nu}(n) \leq 2Q_{\nu}(n/4) + 2$.

Goal: $Q_{\nu}(n) \leq 2Q_{\nu}(n/4) + 2$.

•
$$Q_{\nu}(n) \leq 2Q_{\nu}(n/4) + 2$$
 $\Rightarrow Q_{\nu}(n) \in O(\sqrt{n})$

•
$$Q_{\nu}(n) \leq 2Q_{\nu}(n/4) + 2$$
 $\Rightarrow Q_{\nu}(n) \in O(\sqrt{n})$

• Similarly:
$$Q_h(n) \leq 2Q_h(n/4) + 3 \qquad \Rightarrow Q_h(n) \in O(\sqrt{n})$$

- $Q_{\nu}(n) \le 2Q_{\nu}(n/4) + 2$ $\Rightarrow Q_{\nu}(n) \in O(\sqrt{n})$
- Similarly: $Q_h(n) \leq 2Q_h(n/4) + 3 \qquad \Rightarrow Q_h(n) \in O(\sqrt{n})$
- $Q(n) \le 2Q_{\nu}(n) + 2Q_{h}(n) \in O(\sqrt{n})$

Theorem: In a range-query in a kd-tree (of points in general position) there are $O(\sqrt{n})$ boundary-nodes.

- $Q_{\nu}(n) \leq 2Q_{\nu}(n/4) + 2$ $\Rightarrow Q_{\nu}(n) \in O(\sqrt{n})$
- Similarly: $Q_h(n) \le 2Q_h(n/4) + 3$ $\Rightarrow Q_h(n) \in O(\sqrt{n})$
- $Q(n) \le 2Q_{\nu}(n) + 2Q_{h}(n) \in O(\sqrt{n})$

Theorem: In a range-query in a kd-tree (of points in general position) there are $O(\sqrt{n})$ boundary-nodes.

- So range-search takes $O(\sqrt{n} + s)$ time.
- Note: It is *crucial* that we have $\approx n/4$ points in each grand-child of the root.

3-sided range search

Consider a special kind of range-search:

3sidedRangeSearch(x_1, x_2, y'): return (x, y) with $x_1 \le x \le x_2$ and $y \ge y'$.

Can we adapt previous ideas to achieve O(n) space and fast range-search time?

Idea 1: Associated heaps

- Primary tree: balanced binary search tree.
- Associated tree: binary heap.
- Space: $\Theta(n \log n)$.
- Range-search time?

 Search in primary as before.

Idea 2: Treaps

Recall: Treap = binary search tree (with respect to keys) + heap (with respect to priorities)

Idea: Use x-coordinate as key, y-coordinate as priority. Space: $\Theta(n)$.

Treap::3-sided-range-search(T, 28, 47, 36):

• BST::range-search(x_1, x_2) to get boundary and topmost inside nodes.

Treap::3-sided-range-search(T, 28, 47, 36):

- BST::range-search(x_1, x_2) to get boundary and topmost inside nodes.
- Boundary-nodes: Explicitly test whether in x-range and y-range.

Treap::3-sided-range-search(T, 28, 47, 36):

- BST::range-search(x_1, x_2) to get boundary and topmost inside nodes.
- Boundary-nodes: Explicitly test whether in x-range and y-range.
- Topmost inside-nodes: If $y \ge y_1$, report and recurse in children.

Treap::3-sided-range-search(T, 28, 47, 36):

- BST::range-search(x_1, x_2) to get boundary and topmost inside nodes.
- Boundary-nodes: Explicitly test whether in x-range and y-range.
- Topmost inside-nodes: If $y \ge y_1$, report and recurse in children.

Run-time for 3-sided range search in treaps:

- BST::range-search(x_1, x_2) O(height) since we do not report points.
- Testing boundary-nodes: O(height)
- Testing heap: $O(1 + s_v)$ per topmost inside-node v
- $\Rightarrow O(height + s)$ run-time, O(n) space

But: No guarantees on the height of the treap (not even in expectation) since we cannot choose priorities.

Idea 3: Priority search trees

- Design a new data structure
- Keep good aspects of treap (store *y*-coordinates in heap-order)
- Keep good aspects of kd-tree (split in half by x-coordinate)

Key idea: The x-coordinate stored for splitting can be *different* from the x-coordinate of the stored point.

Idea 3: Priority search trees

- every node v stores a point $p_v = (x_v, y_v)$,
 - y_v is the maximum y-coordinate in subtree (heap-property!)
- every non-leaf v stores an x-coordinate x'_v (split-line)
 - Every point p in left subtree has $p.x < x'_v$
 - Every point p in right subtree has $p.x \ge x'_{\nu}$
- x'_{ν} is chosen so that tree is balanced \Rightarrow height $O(\log n)$.

Idea 3: Priority search trees

- Construction: $O(n \log n)$ time (exercise)
- search: $O(\log n)$ time
 - Get search-path by following split-lines, check all nodes on path
- insert, delete: Re-balancing is difficult, but can be done (no details).
- 3-sided range search: As in treaps, but height now $O(\log n)$.
 - Run-time $O(\log n + s)$

3-sided range search summary

- Idea 1: Scapegoat tree + associated heaps $O(\log n + s)$ time for range search, but $\omega(n)$ space.
- Idea 2: Treaps O(n) space, but range search takes O(height + s), could be slow
- Idea 3: Priority search tree O(n) space, $O(\log n + s)$ time for range search.

Sometimes it pays to design purpose-built data structures.