CS 240 – Data Structures and Data Management

Module 9: String Matching

T. Biedl É. Schost O. Veksler Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-03-30 10:36

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

Outline

String Matching

Introduction

- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

Pattern Matching Definition [1]

- Search for a string (pattern) in a large body of text
- T[0..n-1] The text (or haystack) being searched within
- P[0..m-1] The pattern (or needle) being searched for
- Strings over alphabet Σ
- Return smallest *i* such that

$$P[j] = T[i+j]$$
 for $0 \le j \le m-1$

- This is the first occurrence of P in T
- If *P* does not occur in *T*, return FAIL
- Applications:
 - Information Retrieval (text editors, search engines)
 - Bioinformatics
 - Data Mining

Pattern Matching Definition [2]

Example:

- T = "Where is he?"
- $P_1 =$ "he"
- $P_2 = ``who''$

Definitions:

- Substring T[i..j] 0 ≤ i ≤ j < n: a string of length j − i + 1 which consists of characters T[i],... T[j] in order
- A prefix of *T*:
 a substring *T*[0..*i*] of *T* for some 0 ≤ *i* < *n*
- A suffix of *T*:
 a substring *T*[*i*..*n*−1] of *T* for some 0 ≤ *i* ≤ *n*−1

General Idea of Algorithms

Pattern matching algorithms consist of guesses and checks:

- A guess or shift is a position *i* such that *P* might start at T[i]. Valid guesses (initially) are $0 \le i \le n - m$.
- A check of a guess is a single position j with 0 ≤ j < m where we compare T[i + j] to P[j]. We must perform m checks of a single correct guess, but may make (many) fewer checks of an incorrect guess.

We will diagram a single run of any pattern matching algorithm by a matrix of checks, where each row represents a single guess.

Brute-force Algorithm

Idea: Check every possible guess.

Bruteforce::patternMatching(T[0..n-1], P[0..m-1]) T: String of length n (text), P: String of length m (pattern) 1. for $i \leftarrow 0$ to n - m do 2. if strcmp(T[i..i+m-1], P) = 03. return "found at guess i" 4. return FAIL

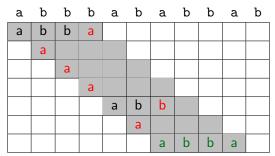
TB changed recently: This (and many other) algorithm are now described as 'method::patternMatching' to be closer to C + + and Java code.

Note: strcmp takes $\Theta(m)$ time.

```
strcmp(T[i..i+m-1], P[0..m-1])
1. for j \leftarrow 0 to m-1 do
2. if T[i+j] is before P[j] in \Sigma then return -1
3. if T[i+j] is after P[j] in \Sigma then return 1
4. return 0
```

Brute-Force Example

• Example: T = abbbabbabbab, P = abba



- What is the worst possible input? $P = a^{m-1}b, T = a^n$
- Worst case performance $\Theta((n-m+1)m)$
- This is $\Theta(mn)$ e.g. if m = n/2.

How to improve?

More sophisticated algorithms

- Do extra preprocessing on the pattern P
 - Karp-Rabin
 - Boyer-Moore
 - Deterministic finite automata (DFA), KMP
 - We eliminate guesses based on completed matches and mismatches.
- Do extra preprocessing on the text T
 - Suffix-trees
 - We create a data structure to find matches easily.

Outline

String Matching

Introduction

• Karp-Rabin Algorithm

- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

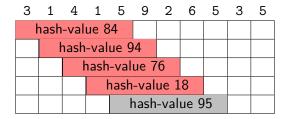
Karp-Rabin Fingerprint Algorithm – Idea

Idea: use hashing to eliminate guesses

- Compute hash function for each guess, compare with pattern hash
- If values are unequal, then the guess cannot be an occurrence
- Example: $P = 5 \ 9 \ 2 \ 6 \ 5$, $T = 3 \ 1 \ 4 \ 1 \ 5 \ 9 \ 2 \ 6 \ 5 \ 3 \ 5$
 - Use standard hash-function: flattening + modular (radix R = 10):

$$h(x_0 \dots x_4) = (x_0 x_1 x_2 x_3 x_4)_{10} \mod 97$$

• $h(P) = 59265 \mod 97 = 95.$



8 / 40

Karp-Rabin Fingerprint Algorithm – First Attempt

Karp-Rabin-Simple::patternMatching(T, P)1.
$$h_P \leftarrow h(P[0..m-1)])$$
2.for $i \leftarrow 0$ to $n-m$ 3. $h_T \leftarrow h(T[i..i+m-1])$ 4.if $h_T = h_P$ 5.if strcmp(T[i..i+m-1], P) = 06.return "found at guess i"7.return FAIL

- Never misses a match: $h(T[i..i+m-1]) \neq h(P) \Rightarrow$ guess *i* is not *P*
- h(T[i..i+m-1]) depends on m characters, so naive computation takes Θ(m) time per guess
- Running time is $\Theta(mn)$ if P not in T (how can we improve this?)

Karp-Rabin Fingerprint Algorithm – Fast Update

The initial hashes are called fingerprints.

Crucial insight: We can update these fingerprints in constant time.

- Use previous hash to compute next hash
- O(1) time per hash, except first one

Example:

- Pre-compute: 10000 mod 97 = 9
- Previous hash: 41592 mod 97 = 76
- Next hash: 15926 mod 97 = ??

Karp-Rabin Fingerprint Algorithm – Fast Update

The initial hashes are called fingerprints.

Crucial insight: We can update these fingerprints in constant time.

- Use previous hash to compute next hash
- O(1) time per hash, except first one

Example:

- Pre-compute: 10000 mod 97 = 9
- Previous hash: 41592 mod 97 = 76
- Next hash: 15926 mod 97 = ??

Observe: $15926 = (41592 - 4 \cdot 10\,000) \cdot 10 + 6$

$$15926 \mod 97 = \left(\underbrace{(\underbrace{41592 \mod 97}_{76 \text{ (previous hash)}} -4 \cdot \underbrace{10000 \mod 97}_{9 \text{ (pre-computed)}} \right) \cdot 10 + 6 \pmod{97} \\ = \left((76 - 4 \cdot 9) \cdot 10 + 6 \right) \mod 97 = 18$$

10 / 40

Karp-Rabin Fingerprint Algorithm – Conclusion

TB changed recently: Mark P. found an error in code; need to pick M first.

```
Karp-Rabin-RollingHash::patternMatching(T, P)
      M \leftarrow suitable prime number
1.
2. h_P \leftarrow h(P[0..m-1)])
3. h_T \leftarrow h(T[0..m-1])
4. s \leftarrow 10^{m-1} \mod M
5. for i \leftarrow 0 to n - m
6
            if h_T = h_P
                 if strcmp(T[i..i+m-1], P) = 0
7
                      return "found at guess i"
8
            if i < n - m // compute hash-value for next guess
9.
                 h_T \leftarrow ((h_T - T[i] \cdot s) \cdot 10 + T[i+m]) \mod M
10.
       return "FAIL"
11.
```

- Choose "table size" M at random to be huge prime
- Expected running time is O(m + n)
- $\Theta(mn)$ worst-case, but this is (unbelievably) unlikely

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm

• String Matching with Finite Automata

- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

String Matching with Finite Automata

Example: Automaton for the pattern P = ababaca

You should be familiar with:

• finite automaton, DFA, NFA, converting NFA to DFA

b

а

• transition function δ , states Q, accepting states F

3

а

а

а

String Matching with Finite Automata

Example: Automaton for the pattern P = ababaca

You should be familiar with:

• finite automaton, DFA, NFA, converting NFA to DFA

b

• transition function δ , states Q, accepting states F

3

а

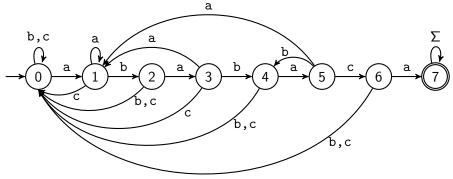
- The above finite automation is an NFA
- State q expresses "we have seen P[0..q-1]"
 - NFA accepts T if and only if T contains ababaca
 - But evaluating NFAs is very slow.

а

а

String matching with DFA

Can show: There exists an equivalent small DFA.



- Easy to test whether P is in T.
- But how do we find the arcs?
- We will not give the details of this since there is an even better automaton.

Outline

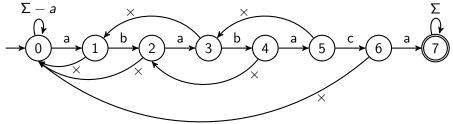
String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata

• Knuth-Morris-Pratt algorithm

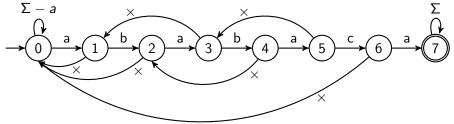
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

Knuth-Morris-Pratt Motivation



- Use a new type of transition × (*"failure"*):
 - Use this transition only if no other fits.
 - Does not consume a character.
 - With these rules, computations of the automaton are deterministic. (But it is formally not a valid DFA.)

Knuth-Morris-Pratt Motivation



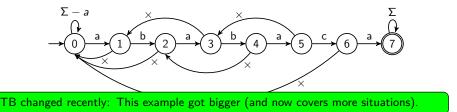
- Use a new type of transition × (*"failure"*):
 - Use this transition only if no other fits.
 - Does not consume a character.
 - With these rules, computations of the automaton are deterministic. (But it is formally not a valid DFA.)
- Can store failure-function in an array F[0..m-1]
 - The failure arc from state j leads to F[j-1]
- Given the failure-array, we can easily test whether *P* is in *T*: Automaton accepts *T* if and only if *T* contains ababaca

Knuth-Morris-Pratt Algorithm

KMP::patternMatching(T, P)1. $F \leftarrow failureArray(P)$ 2. $i \leftarrow 0 //$ current character of T to parse 3. $j \leftarrow 0 //$ current state: we have seen P[0..j-1]4. while i < n do 5. if P[i] = T[i]6. if i = m - 17. **return** "found at guess i - m + 1" 8. else 9. $i \leftarrow i + 1$ $i \leftarrow i + 1$ 10. else // i.e. $P[j] \neq T[i]$ 11. **if** i > 012. $i \leftarrow F[i-1]$ 13. 14. else $i \leftarrow i + 1$ 15. 16. return FAIL

String matching with KMP – Example

Example: T = ababababaca, P = ababaca



T :	а	b	а	b	а	b	b	с	a	b	a	b	a	С	а
	a	b	a	b	a	×									
			(a)			b									
					(a)	(b)	×								
							×								
								×							
									a	b	a	b	a	С	a

Biedl, Schost, Veksler (SCS, UW)

CS240 – Module 9

Б

3 4 5 Winter 2021

16 / 40

String matching with KMP - Failure-function

Assume we reach state j+1 and now have mismatch.

- Can eliminate "shift by 1" if $P[1..j] \neq P[0..j-1]$.
- Can eliminate "shift by 2" if P[1..j] does not end with P[0..j-2].
- Generally eliminate guess if that prefix of P is not a suffix of P[1..j].
- So want longest prefix $P[0..\ell-1]$ that is a suffix of P[1..j].
- The ℓ characters of this prefix are matched, so go to state ℓ .
 - F[j] = head of failure-arc from state j+1
 - = length of the longest prefix of P that is a suffix of P[1..j].

KMP Failure Array – Example

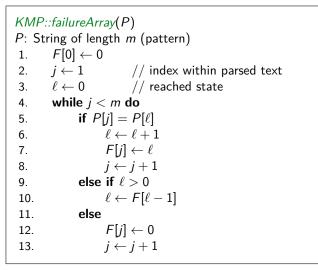
F[j] is the length of the longest prefix of P that is a suffix of P[1..j].

Consider P = ababaca

j	P[1j]	Prefixes of P	longest	F[j]
0	Λ	$\Lambda, \texttt{a}, \texttt{ab}, \texttt{aba}, \texttt{ababb}, \texttt{ababa}, \dots$	Λ	0
1	b	$\Lambda, a, ab, aba, abab, ababa, \ldots$	Λ	0
2	ba	$\Lambda, a, ab, aba, abab, ababa, \ldots$	a	1
3	bab	$\Lambda, \texttt{a}, \texttt{ab}, \texttt{aba}, \texttt{abab}, \texttt{ababa}, \dots$	ab	2
4	baba	$\Lambda, \mathtt{a}, \mathtt{a} \mathtt{b}, \mathtt{a} \mathtt{b} \mathtt{a}, \mathtt{a} \mathtt{b} \mathtt{a} \mathtt{b} \mathtt{a} \mathtt{b} \mathtt{a} \mathtt{b} \mathtt{a}, \ldots$	aba	3
5	babac	$\Lambda, a, ab, aba, abab, ababa, \ldots$	Λ	0
6	babaca	$\Lambda, \mathtt{a}, \mathtt{a}\mathtt{b}, \mathtt{a}\mathtt{b}\mathtt{a}, \mathtt{a}\mathtt{b}\mathtt{a}\mathtt{b}\mathtt{a}, \ldots$	a	1

This can clearly be computed in $O(m^3)$ time, but we can do better!

Computing the Failure Array



TB changed recently: Renamed $i \rightarrow j$ and $j \rightarrow \ell$ so that we compute F[j], not F[i]

Correctness-idea: F[j] is defined via pattern matching of P in P[1...j]. Biedl, Schost, Veksler (SCS, UW) CS240 – Module 9 Winter 2021 19 / 40

KMP – Runtime

failureArray

- Consider how $2j \ell$ changes in each iteration of the while loop
 - j and ℓ both increase by $1 \Rightarrow 2j \ell$ increases -OR-
 - ℓ decreases $(F[\ell 1] < \ell) \Rightarrow 2j \ell$ increases -OR-

•
$$j$$
 increases $\Rightarrow 2j - \ell$ increases

- Initially $2j \ell \geq 0$, at the end $2j \ell \leq 2m$
- So no more than 2*m* iterations of the while loop.
- Running time: $\Theta(m)$

KMP – Runtime

failureArray

- Consider how $2j \ell$ changes in each iteration of the while loop
 - j and ℓ both increase by $1 \Rightarrow 2j \ell$ increases -OR-
 - ℓ decreases $(F[\ell 1] < \ell) \Rightarrow 2j \ell$ increases -OR-
 - j increases $\Rightarrow 2j \ell$ increases
- Initially $2j-\ell\geq 0$, at the end $2j-\ell\leq 2m$
- So no more than 2*m* iterations of the while loop.
- Running time: $\Theta(m)$

KMP main function

- failureArray can be computed in $\Theta(m)$ time
- Same analysis gives at most 2n iterations of the while loop since $2i j \le 2n$.
- Running time KMP altogether: $\Theta(n+m)$

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm

• Boyer-Moore Algorithm

- Suffix Trees
- Suffix Arrays
- Conclusion

Boyer-Moore Algorithm

Fastest pattern matching on English text.

Important components:

• Reverse-order searching: Compare *P* with a guess moving backwards

When a mismatch occurs, choose the better of the following two options:

- Bad character jumps: Eliminate guesses based on mismatched characters of *T*.
- Good suffix jumps: Eliminate guesses based on matched suffix of *P*.

TB changed recently: In W21 this was greatly expanded (and is now much more similar to Olga's slides.

- P: aldo
- T: whereiswaldo

Forward-searching:

w	h	е	r	е	i	s	w	а	Ι	d	0

Reverse-searching:

w	h	е	r	е	i	s	W	а	Ι	d	0

TB changed recently: In W21 this was greatly expanded (and is now much more similar to Olga's slides.

- P: aldo
- T: whereiswaldo

Forward-searching:

w	h	е	r	е	i	s	w	а	Ι	d	0
а											

w does not occur in P.
 ⇒ shift pattern past w.

Reverse-searching:

w	h	е	r	е	i	s	w	а	I	d	0
			0								

r does not occur in P.
 ⇒ shift pattern past r.

TB changed recently: In W21 this was greatly expanded (and is now much more similar to Olga's slides.

- P: aldo
- T: whereiswaldo

Forward-searching:

w	h	е	r	е	i	s	w	а	Ι	d	0
а											
	а										

- w does not occur in P.
 ⇒ shift pattern past w.
- h does not occur in P.
 ⇒ shift pattern past h.

Reverse-searching:



- r does not occur in P.
 ⇒ shift pattern past r.
- w does not occur in P.
 - \Rightarrow shift pattern past w.

TB changed recently: In W21 this was greatly expanded (and is now much more similar to Olga's slides.

- P: aldo
- T: whereiswaldo

Forward-searching:

- w does not occur in P.
 ⇒ shift pattern past w.
- h does not occur in P.
 ⇒ shift pattern past h.

With forward-searching, no guesses are ruled out.

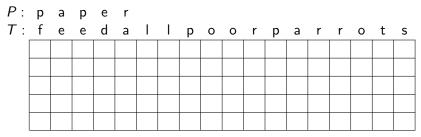
Reverse-searching:

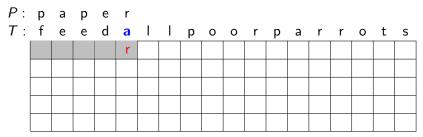
- r does not occur in P.
 ⇒ shift pattern past r.
- w does not occur in P.
 ⇒ shift pattern past w.

This *bad character heuristic* works well with reverse-searching.

CS240 - Module 9

Bad character heuristic details

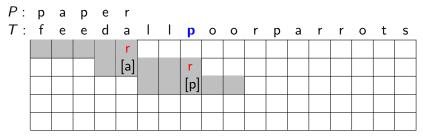




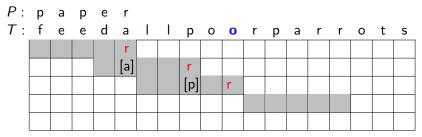
• Mismatched character in the text is a



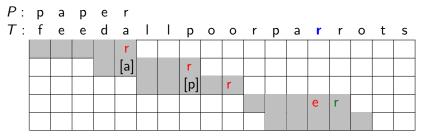
- Mismatched character in the text is a
- Shift the guess until a in P aligns with a in T
 - All skipped guessed are impossible since they do not match a



- Mismatched character in the text is a
- Shift the guess until a in P aligns with a in T
 - All skipped guessed are impossible since they do not match a
- Shift the guess until *last* p in P aligns with p in T
 - Use "last" since we cannot rule out this guess.



- Mismatched character in the text is a
- Shift the guess until a in P aligns with a in T
 - All skipped guessed are impossible since they do not match a
- Shift the guess until *last* p in P aligns with p in T
 - Use "last" since we cannot rule out this guess.
- As before, shift completely past o since o is not in P.



- Mismatched character in the text is a
- Shift the guess until a in P aligns with a in T
 - All skipped guessed are impossible since they do not match a
- Shift the guess until *last* p in P aligns with p in T
 - Use "last" since we cannot rule out this guess.
- As before, shift completely past o since o is not in P.
- Finding **r** does not help \Rightarrow shift by one unit.
 - Here the other strategy will do better.

Last-Occurrence Array

- Build the last-occurrence array L mapping Σ to integers
- L[c] is the largest index *i* such that P[i] = c
- We will see soon: If c is not in P, then we should set L[c] = -1

Pattern: paper	char	p	а	е	r	all others
	$L[\cdot]$	2	1	3	4	-1

• We can build this in time $O(m+|\Sigma|)$ with simple for-loop

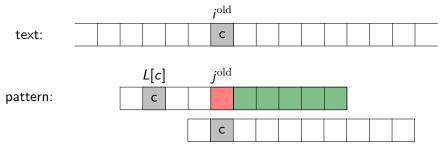
• But how should we do the update?

TB changed recently: This (and many other) algorithm are now described as 'method::patternMatching' to be closer to C + + and Java code.

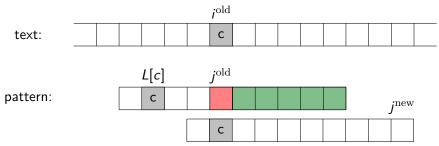
Biedl, Schost, Veksler (SCS, UW)

CS240 - Module 9

We will always compare T[i] and P[j]. How to update at a mismatch? "Good" case: L[c] < j, so c is left of P[j].

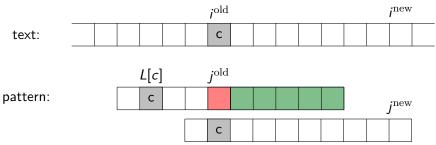


We will always compare T[i] and P[j]. How to update at a mismatch? "Good" case: L[c] < j, so c is left of P[j].



• $j^{\text{new}} = m - 1$ (we re-start the search from the right end)

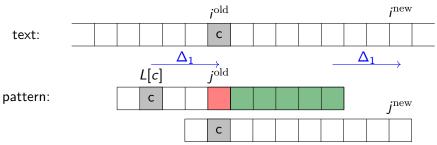
We will always compare T[i] and P[j]. How to update at a mismatch? "Good" case: L[c] < j, so c is left of P[j].



j^{new} = m-1 (we re-start the search from the right end)
 i^{new} = corresponding index in *T*. What is it?

Biedl, Schost, Veksler (SCS, UW)

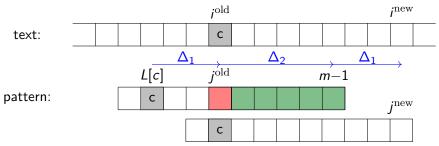
We will always compare T[i] and P[j]. How to update at a mismatch? "Good" case: L[c] < j, so c is left of P[j].



• $j^{\text{new}} = m - 1$ (we re-start the search from the right end)

- $i^{\text{new}} = \text{corresponding index in } T$. What is it?
 - $\Delta_1 =$ amount that we should shift $= j^{
 m old} L[c]$

We will always compare T[i] and P[j]. How to update at a mismatch? "Good" case: L[c] < j, so c is left of P[j].



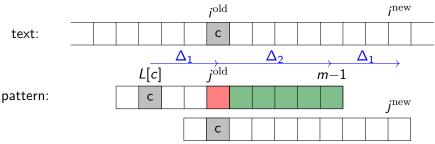
• $j^{\text{new}} = m - 1$ (we re-start the search from the right end)

• $i^{\text{new}} = \text{corresponding index in } T$. What is it?

•
$$\Delta_1 =$$
amount that we should shift $= j^{\text{old}} - L[c]$

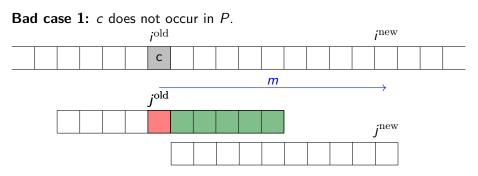
• Δ_2 = how much we had compared = $(m-1) - j^{\text{old}}$

We will always compare T[i] and P[j]. How to update at a mismatch? "Good" case: L[c] < j, so c is left of P[j].

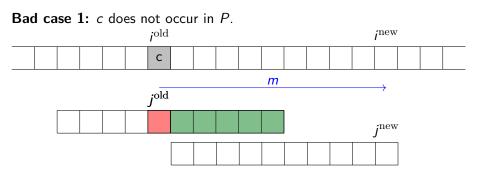


• $j^{\mathrm{new}} = m - 1$ (we re-start the search from the right end)

- $i^{\text{new}} = \text{corresponding index in } T$. What is it?
 - $\Delta_1 = \text{amount that we should shift} = j^{\text{old}} L[c]$
 - Δ_2 = how much we had compared = $(m-1) j^{\text{old}}$
 - ► $i^{\text{new}} = i^{\text{old}} + \Delta_2 + \Delta_1 = i^{\text{old}} + (m-1) L[c]$



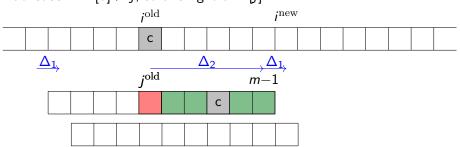
- We want to shift past $T[i^{\text{old}}]$, so need $i^{\text{new}} = i^{\text{old}} + m$
- What value of *L*[*c*] would achieve this automatically?



- We want to shift past $T[i^{\text{old}}]$, so need $i^{\text{new}} = i^{\text{old}} + m$
- What value of *L*[*c*] would achieve this automatically?
 - formula was $i^{\text{new}} = i^{\text{old}} + (m-1) L[c]$

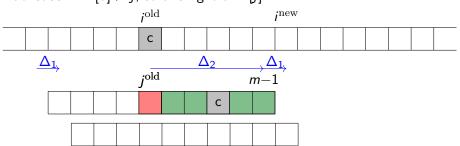
$$\Rightarrow$$
 set $L[c] := -1$

Bad case 2: L[c] > j, so c is right of P[j].



- Bad character heuristic not helpful in this case.
- We want to shift by $\Delta_1 := 1$ units

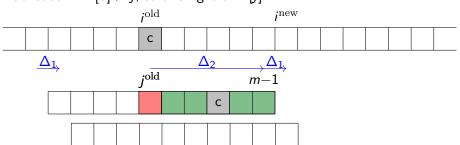
Bad case 2: L[c] > j, so c is right of P[j].



- Bad character heuristic not helpful in this case.
- We want to shift by $\Delta_1 := 1$ units

$$i^{\mathrm{new}} = i^{\mathrm{old}} + \Delta_2 + \Delta_1 = i^{\mathrm{old}} + 1 + (m-1) - j^{\mathrm{old}}$$

Bad case 2: L[c] > j, so c is right of P[j].



- Bad character heuristic not helpful in this case.
- We want to shift by $\Delta_1 := 1$ units

$$i^{\mathrm{new}} = i^{\mathrm{old}} + \Delta_2 + \Delta_1 = i^{\mathrm{old}} + 1 + (m-1) - j^{\mathrm{old}}$$

Unified formula for all cases:

$$i^{\mathrm{new}} = i^{\mathrm{old}} + (m{-}1) - \min\left\{L[c], j^{\mathrm{old}}{-}1
ight\}$$

27 / 40

Boyer-Moore Algorithm

Boyer-Moore::patternMatching(T,P) 1. $L \leftarrow lastOccurrenceArray(P)$ 2. $S \leftarrow \text{good suffix array computed from } P$ 3. $i \leftarrow m-1$, $i \leftarrow m-1$ 4. while i < n and j > 0 do **if** T[i] = P[i]5. $i \leftarrow i - 1$ 6. $i \leftarrow i - 1$ 7. else 8. $i \leftarrow i + m - 1 - \min\{L[T[i]], j - 1\}$ 9. $i \leftarrow m-1$ 10. 11. **if** i = -1 **return** "found at T[i+1..i+m]" 12. else return FAIL

If good suffix heuristic is used, then 9 should be $i \leftarrow i + m - 1 - \min\{L[T[i]], S[j]\}$ where S will be explained below.

Biedl, Schost, Veksler (SCS, UW)

CS240 - Module 9

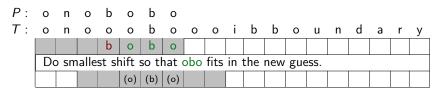
Good Suffix Heuristic

TB changed recently: We sometimes used 'good suffix' and sometimes 'suffix skip'; this should now be 'good suffix' everywhere.

TB changed recently: Good suffix details removed and replaced by this

S[j] expresses

"since P[j+1..m-1] was matched, how much should we shift?"



• Doing examples is easy, but the formula is complicated (no details)

• $S[\cdot]$ computable (similar to KMP failure function) in $\Theta(m)$ time.

Summary:

- Boyer-Moore performs very well (even without good suffix heuristic).
- On typical *English text* Boyer-Moore looks at only pprox 25% of T

Biedl, Schost, Veksler (SCS, UW) CS240 - Module 9 Winter 2021 29 / 40

Outline

String Matching

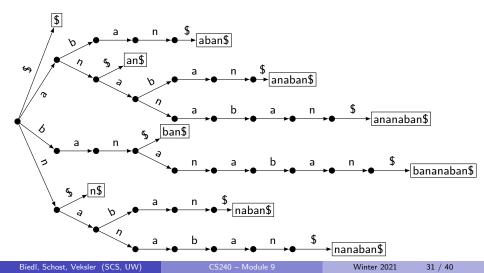
- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

Tries of Suffixes and Suffix Trees

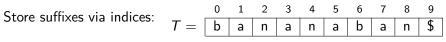
- What if we want to search for many patterns *P* within the same fixed text *T*?
- Idea: Preprocess the text T rather than the pattern P
- Observation: *P* is a substring of *T* if and only if *P* is a prefix of some suffix of *T*.
- So want to store all suffixes of T in a trie.
- To save space:
 - Use a compressed trie.
 - Store suffixes implicitly via indices into T.
- This is called a suffix tree.

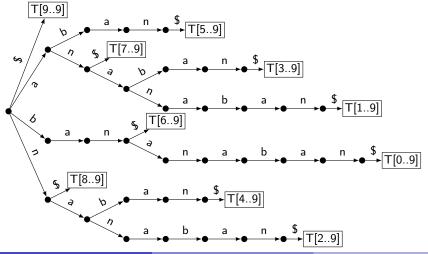
Trie of suffixes: Example

T =bananaban has suffixes



Tries of suffixes



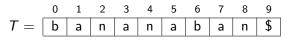


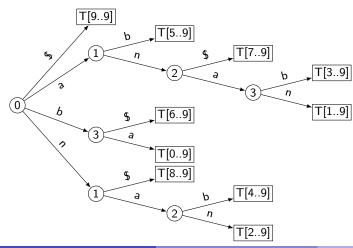
Biedl, Schost, Veksler (SCS, UW)

CS240 - Module 9

Suffix tree

Suffix tree: Compressed trie of suffixes





More on Suffix Trees Building:

- Text T has n characters and n + 1 suffixes
- We can build the suffix tree by inserting each suffix of T into a compressed trie. This takes time Θ(n²|Σ|).

TB changed recently: Some run-times had $|\boldsymbol{\Sigma}|$ added.

There is a way to build a suffix tree of T in Θ(n|Σ|) time.
 This is quite complicated and beyond the scope of the course.

Pattern Matching:

- Essentially *search* for *P* in compressed trie. Some changes are needed, since *P* may only be prefix of stored word.
- Run-time: $O(|\Sigma|m)$.

TB changed recently: Suffix tree PM much shortened.

Summary: Theoretically good, but construction is slow or complicated, and lots of space-overhead \rightsquigarrow rarely used.

Biedl, Schost, Veksler (SCS, UW)

CS240 – Module 9

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees

• Suffix Arrays

Conclusion

Suffix Arrays

TB changed recently: This entire section is new to CS240R (some was used by CS240E before)

- Relatively recent development (popularized in the 1990s)
- Sacrifice some performence for simplicity:
 - Slightly slower (by a log-factor) than suffix trees.
 - Much easier to build.
 - Much simpler pattern matching.
 - Very little space; only one array.

Idea:

- Store suffixes implicitly (by storing start-indices)
- Store *sorting permutation* of the suffixes of *T*.

Suffix Array Example

	0	1	2	3	4	5	6	7	8	9
Text T:	b	а	n	а	n	а	b	а	n	\$

i	suffix $T[in-1]$		j	$A^{s}[j]$	
0	bananaban\$		0	9	\$
1	ananaban\$		1	5	aban\$
2	nanaban\$		2	7	an\$
3	anaban\$		3	3	anaban\$
4	naban\$	/ 	4	1	ananaban\$
5	aban\$	sort lexicographically	5	6	ban\$
6	ban\$		6	0	bananaban\$
7	an\$		7	8	n\$
8	n\$		8	4	naban\$
9	\$		9	2	nanaban\$

Suffix Array Construction

- Easy to construct using MSD-Radix-Sort.
 - ► Fast in practice; suffixes are unlikely to share many leading characters.
 - But worst-case run-time is $\Theta(n^2)$
 - ★ *n* rounds of recursions (have *n* chars)
 - ***** Each round takes $\Theta(n)$ time (bucket-sort)

Suffix Array Construction

- Easy to construct using MSD-Radix-Sort.
 - Fast in practice; suffixes are unlikely to share many leading characters.
 - But worst-case run-time is $\Theta(n^2)$
 - n rounds of recursions (have n chars)
 - ***** Each round takes $\Theta(n)$ time (bucket-sort)
- Idea: We do not need *n* rounds!

 - Consider sub-array after one round.
 These have same leading char. Ties are broken by rest of words.
 But rest of words are also suffixes → sorted elsewhere
 We can double length of sorted part every round.
 - $O(\log n)$ rounds enough $\Rightarrow O(n \log n)$ run-time
- Construction-algorithm: MSD-radix-sort plus some bookkeeping
 - needs only one extra array
 - easy to implement
- You do not need to know details.

- Suffix array stores suffixes (implicitly) in sorted order.
- Idea: apply binary search!

		j	$A^{s}[j]$	$T[A^{s}[j]n-1]$				
P = ban:	$\ell \to$	0	9	\$				
		1	5	aban\$				
		2	7	an\$				
		3	3	anaban\$				
	$\nu \rightarrow$	4	1	ananaban\$				
		5	6	ban\$				
		6	0	bananaban\$				
		7	8	n\$				
		8	4	naban\$				
	r ightarrow	9	2	nanaban\$				

- Suffix array stores suffixes (implicitly) in sorted order.
- Idea: apply binary search!

P = ban:

	j	$A^{s}[j]$	$T[A^{s}[j]n{-}1]$
	0	9	\$
	1	5	aban\$
	2	7	an\$
	3	3	anaban\$
	4	1	ananaban\$
$\ell \rightarrow$	5	6	ban\$
	6	0	bananaban\$
$\nu \rightarrow$	7	8	n\$
	8	4	naban\$
$r \rightarrow$	9	2	nanaban\$

- Suffix array stores suffixes (implicitly) in sorted order.
- Idea: apply binary search!

P = ban:

	j	$A^{s}[j]$	$T[A^{s}[j]n{-}1]$			
	0	9	\$			
	1	5	aban\$			
	2	7	an\$			
	3	3	anaban\$			
	4	1	ananaban\$			
$\nu{=}\ell \rightarrow$	5	6	ban\$ found			
$r \rightarrow r$	6	0	bananaban\$			
	7	8	n\$			
	8	4	naban\$			
	9	2	nanaban\$			

- Suffix array stores suffixes (implicitly) in sorted order.
- Idea: apply binary search!

P = ban:

	j	$A^{s}[j]$	$T[A^{s}[j]n{-}1]$
	0	9	\$
	1	5	aban\$
	2	7	an\$
	3	3	anaban\$
	4	1	ananaban\$
$\nu{=}\ell \rightarrow$	5	6	ban\$ found
$r \rightarrow$	6	0	bananaban\$
	7	8	n\$
	8	4	naban\$
	9	2	nanaban\$

- O(log n) comparisons.
- Each comparison is $strcmp(P, T[A^{s}[\nu]..A^{s}[\nu+m-1]])$
- O(m) time per comparison \Rightarrow run-time $O(m \log n)$

SuffixArray-search($A^{s}[0...n-1], P[0..m-1]$) A^{s} : suffix array of T, P: pattern 1. $\ell \leftarrow 0, r \leftarrow n-1$ while $(\ell < r)$ 2 $\nu \leftarrow \left| \frac{\ell + r}{2} \right|$ 3. $i \leftarrow A^s[\nu]$ // Suffix is T[i..n-1]4. 5. $s \leftarrow strcmp(T[i..i+m-1], P)$ 6. // Assuming *strcmp* handles "out of bounds" suitably 7. if (s < 0) do $\ell \leftarrow \nu + 1$ else if (s > 0) do $r \leftarrow \nu - 1$ 8. else return "found at guess T[i..i+m-1]" 9 10. if strcmp $(T, P, A^{s}[\ell], A^{s}[\ell]+m-1) = 0$ **return** "found at guess $T[\ell..\ell+m-1]$ " 11. return FATL 12

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion

String Matching Conclusion

	Brute- Force	Karp- Rabin	DFA	Knuth- Morris- Pratt	Boyer- Moore	Suffix Tree	Suffix Array
Preproc.		<i>O</i> (<i>m</i>)	$O(m \Sigma)$	<i>O</i> (<i>m</i>)	$O(m+ \Sigma)$	$O(n^2 \Sigma)$ [$O(n) \Sigma $]	$O(n \log n)$ [$O(n)$]
Search time	O(nm)	O(n+m) expected	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	O(n) or better	<i>O</i> (<i>m</i>)	$O(m \log n)$
Extra space	_	<i>O</i> (1)	$O(m \Sigma)$	<i>O</i> (<i>m</i>)	$O(m+ \Sigma)$	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)

- Our algorithms stopped once they have found one occurrence.
- Most of them can be adapted to find *all* occurrences within the same worst-case run-time.