CS 240 - Data Structures and Data Management

Module 9e: String Matching - Enriched

T. Biedl É. Schost O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo
Winter 2021

Outline

Outline

KMP failure function - fast computation

$F[j]$ is the length of the longest prefix of P that is a suffix of $P[1 . . j]$.

- How can we compute this faster?
- Recall property of KMP-automaton of P :
- If we are in state ℓ, then we have just seen $P[0 . . \ell-1]$
$\Leftrightarrow P[0 . . \ell-1]$ is a suffix of what we have just parsed.
- Also, KMP is always in the rightmost state where this holds.
$\Leftrightarrow P[0 . . \ell-1]$ is the longest suffix of what we have just parsed.
$\Leftrightarrow \ell$ is the length of the longest prefix of P that is a suffix of what we have just parsed.

KMP failure function - fast computation

$F[j]$ is the length of the longest prefix of P that is a suffix of $P[1 . . j]$.

- How can we compute this faster?
- Recall property of KMP-automaton of P :
- If we are in state ℓ, then we have just seen $P[0 . . \ell-1]$
$\Leftrightarrow P[0 . . \ell-1]$ is a suffix of what we have just parsed.
- Also, KMP is always in the rightmost state where this holds.
$\Leftrightarrow P[0 . . \ell-1]$ is the longest suffix of what we have just parsed.
$\Leftrightarrow \ell$ is the length of the longest prefix of P that is a suffix of what we have just parsed.

Combine this with the definition of $F[j]$ to get:
$F[j]=\ell \Leftrightarrow$
we reach state ℓ when parsing $P[1 . . j]$ on the KMP-automaton for P

KMP failure function - fast computation
$F[j]=$ the state we reach when parsing $P[1 . . j]$
This immediately gives algorithm: For $j=1,2, \ldots$,

- parse $P[1 . . j]$ on the KMP-automaton for P
- Set $F[j]=\ell$ if we reach state ℓ

KMP failure function - fast computation

$F[j]=$ the state we reach when parsing $P[1 . . j]$
This immediately gives algorithm: For $j=1,2, \ldots$,

- parse $P[1 . . j]$ on the KMP-automaton for P
- Set $F[j]=\ell$ if we reach state ℓ

Observe: We don't need to re-start the parsing from scratch!

- Assume we have computed $F[j]$ already.
- To compute $F[j+1]$, parse $P[j+1]$ and note reached state.
- So can compute $F[0 . . m-1]$ with one parse of $P[1 . . m-1]$

KMP failure function - fast computation

$F[j]=$ the state we reach when parsing $P[1 . . j]$
This immediately gives algorithm: For $j=1,2, \ldots$,

- parse $P[1 . . j]$ on the KMP-automaton for P
- Set $F[j]=\ell$ if we reach state ℓ

Observe: We don't need to re-start the parsing from scratch!

- Assume we have computed $F[j]$ already.
- To compute $F[j+1]$, parse $P[j+1]$ and note reached state.
- So can compute $F[0 . . m-1]$ with one parse of $P[1 . . m-1]$

But isn't this circular?

- We need failure-arcs for parsing, but we compute them only now!
- But: To compute $F[j]$, parse $P[1 . . j-1]$ first ($j-1$ characters) \Rightarrow reach state $\leq j$
\Rightarrow don't need $F[j](=\operatorname{arc}$ from state $j+1)$ to parse $P[j]$

