
CS 240 – Data Structures and Data Management

Module 9e: String Matching - Enriched

T. Biedl É. Schost O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-03-30 10:36

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 9e Winter 2021 1 / 1



Outline

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 9e Winter 2021



Outline

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 9e Winter 2021



KMP failure function – fast computation

F [j] is the length of the longest prefix of P that is a suffix of P[1..j].

How can we compute this faster?
Recall property of KMP-automaton of P:

I If we are in state `, then we have just seen P[0..`−1]
⇔ P[0..`− 1] is a suffix of what we have just parsed.

I Also, KMP is always in the rightmost state where this holds.
⇔ P[0..`− 1] is the longest suffix of what we have just parsed.
⇔ ` is the length of the longest prefix of P

that is a suffix of what we have just parsed.

Combine this with the definition of F [j] to get:

F [j] = ` ⇔
we reach state ` when parsing P[1..j] on the KMP-automaton for P

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 9e Winter 2021 2 / 1



KMP failure function – fast computation

F [j] is the length of the longest prefix of P that is a suffix of P[1..j].

How can we compute this faster?
Recall property of KMP-automaton of P:

I If we are in state `, then we have just seen P[0..`−1]
⇔ P[0..`− 1] is a suffix of what we have just parsed.

I Also, KMP is always in the rightmost state where this holds.
⇔ P[0..`− 1] is the longest suffix of what we have just parsed.
⇔ ` is the length of the longest prefix of P

that is a suffix of what we have just parsed.

Combine this with the definition of F [j] to get:

F [j] = ` ⇔
we reach state ` when parsing P[1..j] on the KMP-automaton for P

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 9e Winter 2021 2 / 1



KMP failure function – fast computation
F [j] = the state we reach when parsing P[1..j]

This immediately gives algorithm: For j = 1, 2, . . . ,
parse P[1..j] on the KMP-automaton for P
Set F [j] = ` if we reach state `

Observe: We don’t need to re-start the parsing from scratch!
Assume we have computed F [j] already.
To compute F [j+1], parse P[j+1] and note reached state.
So can compute F [0..m−1] with one parse of P[1..m−1]

But isn’t this circular?
We need failure-arcs for parsing, but we compute them only now!
But: To compute F [j], parse P[1..j−1] first (j−1 characters)
⇒ reach state ≤ j
⇒ don’t need F [j] (= arc from state j+1) to parse P[j]

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 9e Winter 2021 3 / 1



KMP failure function – fast computation
F [j] = the state we reach when parsing P[1..j]

This immediately gives algorithm: For j = 1, 2, . . . ,
parse P[1..j] on the KMP-automaton for P
Set F [j] = ` if we reach state `

Observe: We don’t need to re-start the parsing from scratch!
Assume we have computed F [j] already.
To compute F [j+1], parse P[j+1] and note reached state.
So can compute F [0..m−1] with one parse of P[1..m−1]

But isn’t this circular?
We need failure-arcs for parsing, but we compute them only now!
But: To compute F [j], parse P[1..j−1] first (j−1 characters)
⇒ reach state ≤ j
⇒ don’t need F [j] (= arc from state j+1) to parse P[j]

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 9e Winter 2021 3 / 1



KMP failure function – fast computation
F [j] = the state we reach when parsing P[1..j]

This immediately gives algorithm: For j = 1, 2, . . . ,
parse P[1..j] on the KMP-automaton for P
Set F [j] = ` if we reach state `

Observe: We don’t need to re-start the parsing from scratch!
Assume we have computed F [j] already.
To compute F [j+1], parse P[j+1] and note reached state.
So can compute F [0..m−1] with one parse of P[1..m−1]

But isn’t this circular?
We need failure-arcs for parsing, but we compute them only now!
But: To compute F [j], parse P[1..j−1] first (j−1 characters)
⇒ reach state ≤ j
⇒ don’t need F [j] (= arc from state j+1) to parse P[j]

Biedl, Schost, Veksler (SCS, UW) CS240 – Module 9e Winter 2021 3 / 1


