CS 240 – Data Structures and Data Management

Module 11: External Memory

T. Biedl É. Schost O. Veksler Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-03-30 19:22

Outline

External Memory

- Motivation
- Stream-based algorithms
- External sorting
- External Dictionaries
- 2-4 Trees
- *a-b*-Trees
- B-Trees
- Extendible Hashing

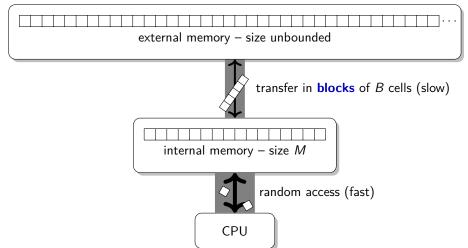
Outline

External Memory

Motivation

- Stream-based algorithms
- External sorting
- External Dictionaries
- 2-4 Trees
- *a-b*-Trees
- B-Trees
- Extendible Hashing

Different levels of memory


Current architectures:

- registers (very fast, very small)
- cache L1, L2 (still fast, less small)
- main memory
- disk or cloud (slow, very large)

General question: how to adapt our algorithms to take the memory hierarchy into account, avoiding transfers as much as possible?

Observation: Accessing a single location in *external memory* (e.g. hard disk) automatically loads a whole **block** (or "page").

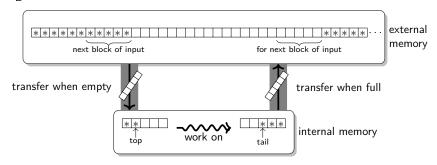
The External-Memory Model (EMM)

New objective: revisit all algorithms/data structures with the objective of minimizing **block transfers** ("probes", "disk transfers", "page loads")

Biedl, Schost, Veksler (SCS, UW)

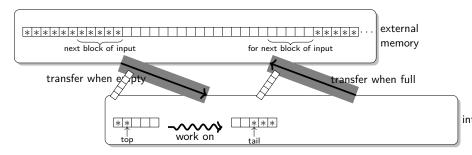
Outline

External Memory


Motivation

• Stream-based algorithms

- External sorting
- External Dictionaries
- 2-4 Trees
- *a-b*-Trees
- B-Trees
- Extendible Hashing


Streams and external memory

If input and output are handles via streams, then we automatically use $\Theta(\frac{n}{B})$ block transfers.

Streams and external memory

If input and output are handles via streams, then we automatically use $\Theta(\frac{n}{B})$ block transfers.

So can do the following with $\Theta(\frac{n}{B})$ block transfers:

- Pattern matching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore (This assumes that pattern *P* fits into internal memory.)
- Text compression: Huffman, run-length encoding, Lempel-Ziv-Welch

TB changed recently: This slide is new

Outline

External Memory

- Motivation
- Stream-based algorithms
- External sorting
- External Dictionaries
- 2-4 Trees
- *a-b*-Trees
- B-Trees
- Extendible Hashing

Sorting in external memory

Recall: The sorting problem:

Given an array A of n numbers, put them into sorted order.

Now assume n is huge and A is stored in blocks in external memory.

- Heapsort was optimal in time and space in RAM model
- But: Heapsort accesses A at indices that are far apart
 → typically one block transfer per array access
 → typically Θ(n log n) block transfers.
 Can we do better?

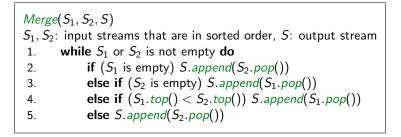
Sorting in external memory

Recall: The sorting problem:

Given an array A of n numbers, put them into sorted order.

Now assume n is huge and A is stored in blocks in external memory.

- Heapsort was optimal in time and space in RAM model
- But: Heapsort accesses A at indices that are far apart


 → typically one block transfer per array access
 → typically Θ(n log n) block transfers.

 Can we do better?
- Mergesort adapts well to external memory. Recall algorithm:
 - Split input in half
 - \blacktriangleright Sort each half recursively \rightarrow two sorted parts
 - Merge sorted parts.

Key idea: Merge can be done with streams.

Merge

TB changed recently: Rewritten this (and some other codes) using streams.

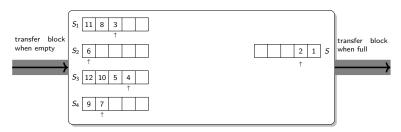
internal memory

Here B = 4

Mergesort in external memory

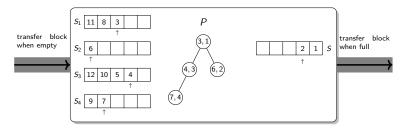
- Merge uses streams S_1, S_2, S .
 - \Rightarrow Each block in the stream only transferred once.
- So Merge takes $\Theta(\frac{n}{B})$ block-transfers.
- Recall: Mergesort uses $\lceil \log_2 n \rceil$ rounds of merging.
- \Rightarrow Mergesort uses $O(\frac{n}{B} \cdot \log_2 n)$ block-transfers.

Not bad, but we can do better.


TB changed recently: The next 6 slides have lots of pictures that I wanted for the book, so we might as well have them here.

Towards *d*-way Mergesort

Observe: We had space left in internal memory during merge.



- We use only three blocks, but typically $M \gg 3B$.
- Idea: We could merge d parts at once.
- Here $d \approx \frac{M}{B} 1$ so that d+1 blocks fit into internal memory.

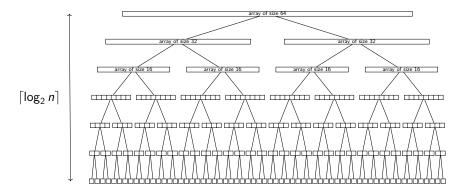
d-way merge

d-way-merge (S_1, \ldots, S_d, S) S_1, \ldots, S_d : input streams that are in sorted order, S: output stream 1. $P \leftarrow \text{empty } \min\text{-oriented}$ priority queue 2. for $i \leftarrow 1$ to d do P.insert($(S_i.top(),i)$) // each item in P keeps track of its input-steam while *P* is not empty **do** 3. 4. $(x, i) \leftarrow P.deleteMin()$ 5. $S.append(S_i.pop())$ 6 **if** S_i is not empty **do** $P.insert((S_i.top(),i))$ 7.

Biedl, Schost, Veksler (SCS, UW)

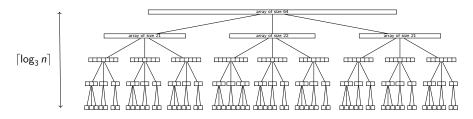
d-way merge

- We use a *min-oriented* priority queue *P* to find the next item to add to the output.
 - This is irrelevant for the number of block transfers.
 - But there is no space-overhead needed for a priority queue. (Recall: heaps are typically implemented as arrays.)
 - And with this the run-time (in RAM-model) is $O(n \log d)$.
- The items in *P* store not only the next key but also the index of the stream that contained the item.
 - With this, can efficiently find the stream to reload from.
- We assume d is such that d + 1 blocks and P fit into main memory.
- The number of *block transfers* then is again $O(\frac{n}{B})$.


d-way merge

- We use a *min-oriented* priority queue *P* to find the next item to add to the output.
 - This is irrelevant for the number of block transfers.
 - But there is no space-overhead needed for a priority queue. (Recall: heaps are typically implemented as arrays.)
 - And with this the run-time (in RAM-model) is $O(n \log d)$.
- The items in *P* store not only the next key but also the index of the stream that contained the item.
 - With this, can efficiently find the stream to reload from.
- We assume d is such that d + 1 blocks and P fit into main memory.
- The number of *block transfers* then is again $O(\frac{n}{B})$.

How does *d*-way merge help to improve external sorting?


Towards *d*-way Mergesort

Recall: Mergesort uses $\lceil \log_2 n \rceil$ rounds of splitting-and-merging.

Towards *d*-way Mergesort

Observe: If we split and merge *d*-ways, there are fewer rounds.

- Number of rounds is now $\lceil \log_d n \rceil$
- We choose d such that each round uses $\Theta(\frac{n}{B})$ block transfers. (Then the number of block transfers is $\Theta(\log_d n \cdot \frac{n}{B})$.)
- Two further improvements:
 - Proceed bottom-up (while-loops) rather than top-down (recursions).
 - Save more rounds by starting immediately with runs of length *M*.

External (B = 2):

39 5 28 22 10 33 29 37 8 30 54 40 31 52 21 45 35 11 42 53 13 12 49 36 4 14 27 9 44 3 32 15 43 2 17 6 46 23 20 1 24 7 18 47 26 16 48 50

Internal $(M = 8)$:											

• Create $\frac{n}{M}$ sorted runs of length M.

TB changed recently: This slide existed a long time ago, got kicked out at some point, but now nicely fits again so is back in.

Biedl, Schost, Veksler (SCS, UW)

CS240 – Module 11

Winter 2021

External (B = 2):

39 5 28 22 10 33 29 37 8 30 54 40 31 52 21 45 35 11 42 53 13 12 49 36 4 14 27 9 44 3 32 15 43 2 17 6 46 23 20 1 24 7 18 47 26 16 48 50

Internal (M = 8): 39 5 28 22 10 33 29 37

• Create $\frac{n}{M}$ sorted runs of length M.

TB changed recently: This slide existed a long time ago, got kicked out at some point, but now nicely fits again so is back in.

Biedl, Schost, Veksler (SCS, UW)

CS240 – Module 11

Winter 2021

External (B = 2):

39 5 28 22 10 33 29 37 8 30 54 40 31 52 21 45 35 11 42 53 13 12 49 36 4 14 27 9 44 3 32 15 43 2 17 6 46 23 20 1 24 7 18 47 26 16 48 50

Internal (M = 8): 5 10 22 28 29 33 37 39

• Create $\frac{n}{M}$ sorted runs of length M.

TB changed recently: This slide existed a long time ago, got kicked out at some point, but now nicely fits again so is back in.

Biedl, Schost, Veksler (SCS, UW)

CS240 – Module 11

Winter 2021

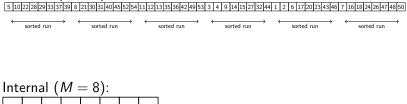
External (B = 2):

5 10 22 28 29 33 37 39 8 30 54 40 31 52 21 45 35 11 42 53 13 12 49 36 4 14 27 9 44 3 32 15 43 2 17 6 46 23 20 1 24 7 18 47 26 16 48 50

sorted run

Internal $(M = 8)$:											

• Create $\frac{n}{M}$ sorted runs of length M.


TB changed recently: This slide existed a long time ago, got kicked out at some point, but now nicely fits again so is back in.

Biedl, Schost, Veksler (SCS, UW)

CS240 – Module 11

Winter 2021

External (B = 2):

• Create $\frac{n}{M}$ sorted runs of length M. $\Theta(\frac{n}{B})$ block transfers

TB changed recently: This slide existed a long time ago, got kicked out at some point, but now nicely fits again so is back in.

Biedl, Schost, Veksler (SCS, UW)

CS240 – Module 11

Winter 2021

External (B = 2):

Internal (M = 8): 5 10 8 21 11 12 $s_1 s_2 s_3 s_3$

(priority queue not shown)

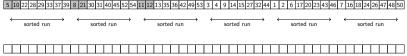
Q Create ⁿ/_M sorted runs of length M. ⊖(ⁿ/_B) block transfers
 Q Merge the first d ≈ ^M/_B − 1 sorted runs using d-Way-Merge

TB changed recently: This slide existed a long time ago, got kicked out at some point, but now nicely fits again so is back in.

Biedl, Schost, Veksler (SCS, UW)

External (B = 2):

Internal (M = 8): 10 8 21 11 12 5 $s_1 s_2 s_3 s$


(priority queue not shown)

Quantum Create n/M sorted runs of length M. ⊖(n/B) block transfers
 Quantum Merge the first d ≈ M/B - 1 sorted runs using d-Way-Merge

TB changed recently: This slide existed a long time ago, got kicked out at some point, but now nicely fits again so is back in.

Biedl, Schost, Veksler (SCS, UW)

External (B = 2):

Internal (M = 8): 10 21 11 2 5 8 $s_1 s_2 s_3 s$


(priority queue not shown)

Quantum Create n/M sorted runs of length M. ⊖(n/B) block transfers
 Quantum Merge the first d ≈ M/B - 1 sorted runs using d-Way-Merge

TB changed recently: This slide existed a long time ago, got kicked out at some point, but now nicely fits again so is back in.

Biedl, Schost, Veksler (SCS, UW)

External (B = 2):

Internal (M = 8): 10 21 11 12

(priority queue not shown)

Oreate ⁿ/_M sorted runs of length M. ⊖(ⁿ/_B) block transfers
 Merge the first d ≈ ^M/_B − 1 sorted runs using d-Way-Merge

TB changed recently: This slide existed a long time ago, got kicked out at some point, but now nicely fits again so is back in.

Biedl, Schost, Veksler (SCS, UW)

External (B = 2):

Internal (M = 8): $s_1 \qquad s_2 \qquad s_3 \qquad s$

(priority queue not shown)

Oreate ⁿ/_M sorted runs of length M. ⊖(ⁿ/_B) block transfers
 Merge the first d ≈ ^M/_B − 1 sorted runs using d-Way-Merge

TB changed recently: This slide existed a long time ago, got kicked out at some point, but now nicely fits again so is back in.

Biedl, Schost, Veksler (SCS, UW)

External (B = 2):

Internal (M = 8): 22 28 21 11 12 10 $s_1 \quad s_2 \quad s_3 \quad s$

(priority queue not shown)

Oreate ⁿ/_M sorted runs of length M. ⊖(ⁿ/_B) block transfers
 Merge the first d ≈ ^M/_R − 1 sorted runs using d-Way-Merge

TB changed recently: This slide existed a long time ago, got kicked out at some point, but now nicely fits again so is back in.

Biedl, Schost, Veksler (SCS, UW)

External (B = 2):

Internal (M = 8): 22 28 21 12 10 11 $s_1 s_2 s_3 s$

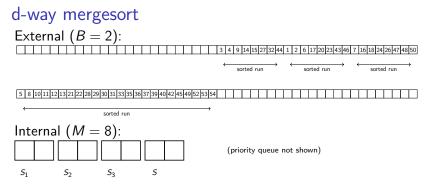
(priority queue not shown)

Oreate ⁿ/_M sorted runs of length M. ⊖(ⁿ/_B) block transfers
 Merge the first d ≈ ^M/_R − 1 sorted runs using d-Way-Merge

TB changed recently: This slide existed a long time ago, got kicked out at some point, but now nicely fits again so is back in.

Biedl, Schost, Veksler (SCS, UW)

External (B = 2):


Internal (M = 8): 22 28 21 12 (r $s_1 s_2 s_3 s$

(priority queue not shown)

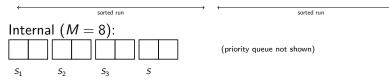
Oreate ⁿ/_M sorted runs of length M. ⊖(ⁿ/_B) block transfers
 Merge the first d ≈ ^M/_R − 1 sorted runs using d-Way-Merge

TB changed recently: This slide existed a long time ago, got kicked out at some point, but now nicely fits again so is back in.

Biedl, Schost, Veksler (SCS, UW)

Oreate ⁿ/_M sorted runs of length M. ⊖(ⁿ/_B) block transfers
 Merge the first d ≈ ^M/_B − 1 sorted runs using d-Way-Merge

TB changed recently: This slide existed a long time ago, got kicked out at some point, but now nicely fits again so is back in.


Biedl, Schost, Veksler (SCS, UW)

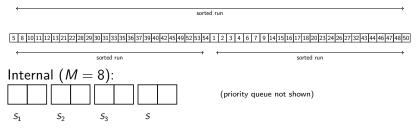
CS240 – Module 11

Winter 2021

d-way mergesort External (*B* = 2):

5 8 10 11 12 13 21 22 28 29 30 31 33 35 36 37 39 40 42 45 49 52 53 54 1 2 3 4 6 7 9 14 15 16 17 18 20 23 24 26 27 32 43 44 64 74 850

- Create $\frac{n}{M}$ sorted runs of length M. $\Theta(\frac{n}{B})$ block transfers
- ② Merge the first $d \approx rac{M}{B} 1$ sorted runs using *d-Way-Merge*
- 3 Keep merging the next runs to reduce # runs by factor of $d \rightarrow 0$ one round of merging. $\Theta(\frac{n}{B})$ block transfers


TB changed recently: This slide existed a long time ago, got kicked out at some point, but now nicely fits again so is back in.

Biedl, Schost, Veksler (SCS, UW)

CS240 – Module 1

Winter 2021

External (B = 2):

- Create $\frac{n}{M}$ sorted runs of length M. $\Theta(\frac{n}{B})$ block transfers
- ② Merge the first $d pprox rac{M}{B} 1$ sorted runs using d-Way-Merge
- **(3)** Keep merging the next runs to reduce # runs by factor of $d \rightarrow 0$ one round of merging. $\Theta(\frac{n}{B})$ block transfers
- Keep doing rounds until only one run is left

TB changed recently: This slide existed a long time ago, got kicked out at some point, but now nicely fits again so is back in.

Biedl, Schost, Veksler (SCS, UW)

- We have $\log_d(\frac{n}{M})$ rounds of merging:
 - $\frac{n}{M}$ runs after initialization
 - $\frac{m}{M}/d$ runs after one round.
 - $\frac{m}{M}/d^k$ runs after k rounds $\Rightarrow k \le \log_d(\frac{n}{M})$.

TB changed recently: Give a bit more detail here

d-way mergesort

- We have $\log_d(\frac{n}{M})$ rounds of merging:
 - $\frac{n}{M}$ runs after initialization
 - $\frac{\ddot{n}}{M}/d$ runs after one round.
 - $\frac{\ddot{n}}{M}/d^k$ runs after k rounds $\Rightarrow k \leq \log_d(\frac{n}{M})$.

TB changed recently: Give a bit more detail here

- We have $O(\frac{n}{B})$ block-transfers per round.
- $d \approx \frac{M}{B} 1$.
- \Rightarrow Total # block transfers is proportional to

 $\log_d(\frac{n}{M}) \cdot \frac{n}{B}) \in O(\log_{M/B}(\frac{n}{M}) \cdot \frac{n}{B})$

d-way mergesort

- We have $\log_d(\frac{n}{M})$ rounds of merging:
 - $\frac{n}{M}$ runs after initialization
 - $\frac{m}{M}/d$ runs after one round.
 - $\frac{\ddot{n}}{M}/d^k$ runs after k rounds $\Rightarrow k \leq \log_d(\frac{n}{M})$.

TB changed recently: Give a bit more detail here

• We have
$$O(\frac{n}{B})$$
 block-transfers per round.

•
$$d \approx \frac{M}{B} - 1$$

 \Rightarrow Total # block transfers is proportional to

 $\log_d(\frac{n}{M}) \cdot \frac{n}{B}) \in O(\log_{M/B}(\frac{n}{M}) \cdot \frac{n}{B})$

One can prove lower bounds in the external memory model:

We require $\Omega(\log_{M/B}(\frac{n}{M}) \cdot \frac{n}{B})$ block transfers in any comparisonbased sorting algorithm.

(The proof is beyond the scope of the course.)

d-way mergesort

- We have $\log_d(\frac{n}{M})$ rounds of merging:
 - $\frac{n}{M}$ runs after initialization
 - $\frac{\frac{n}{M}}{M}/d$ runs after one round.
 - $\frac{\ddot{n}}{M}/d^k$ runs after k rounds $\Rightarrow k \leq \log_d(\frac{n}{M})$.

TB changed recently: Give a bit more detail here

• We have
$$O(\frac{n}{B})$$
 block-transfers per round.

•
$$d \approx \frac{M}{B} - 1$$

 \Rightarrow Total # block transfers is proportional to

 $\log_d(\frac{n}{M}) \cdot \frac{n}{B}) \in O(\log_{M/B}(\frac{n}{M}) \cdot \frac{n}{B})$

One can prove lower bounds in the external memory model:

We require $\Omega(\log_{M/B}(\frac{n}{M}) \cdot \frac{n}{B})$ block transfers in any comparisonbased sorting algorithm.

(The proof is beyond the scope of the course.)

• *d*-way mergesort is optimal (up to constant factors)!

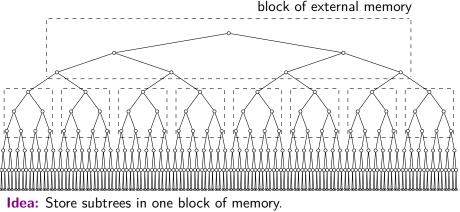
Outline

External Memory

- Motivation
- Stream-based algorithms
- External sorting

External Dictionaries

- 2-4 Trees
- *a-b*-Trees
- B-Trees
- Extendible Hashing


Dictionaries in external memory

Recall: Dictionaries store *n* KVPs and support *search*, *insert* and *delete*.

- Recall: AVL-trees were optimal in time and space in RAM model
- $\Theta(\log n)$ run-time $\Rightarrow O(\log n)$ block transfers per operation
- But: Inserts happen at varying locations of the tree.
 → nearby nodes are unlikely to be on the same block
 → typically Θ(log n) block transfers per operation
- We would like to have *fewer* block transfers.

Better solution: design a tree-structure that *guarantees* that many nodes on search-paths are within one block.

Idealized structure

- If block can hold subtree of size b-1, then block covers height $\log b$
- \Rightarrow Search-path hits $\frac{\Theta(\log n)}{\log b}$ blocks $\Rightarrow \Theta(\log_b n)$ block-transfers
 - Block acts as one node of a *multiway-tree* (b-1 KVPs, b subtrees)

Towards B-trees

TB changed recently: Text from previous slide much expanded, more outlook

• Idea: Define multiway-tree

- One node stores many KVPs
- Always true: b-1 KVPs \Leftrightarrow b subtrees
- To allow insert/delete, we permit varying numbers of KVPs in nodes
- This gives much smaller height than for AVL-trees
 ⇒ fewer block transfers
- Study first one special case: 2-4-trees
 - Also useful for dictionaries in internal memory
 - May be faster than AVL-trees even in internal memory

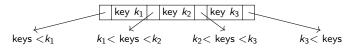
Outline

External Memory

- Motivation
- Stream-based algorithms
- External sorting
- External Dictionaries

2-4 Trees

- *a-b*-Trees
- B-Trees
- Extendible Hashing

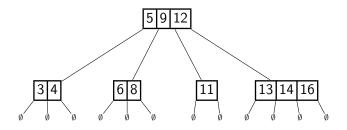

2-4 Trees

Structural property: Every node is either

- 1-node: one KVP and two subtrees (possibly empty), or
- 2-node: two KVPs and three subtrees (possibly empty), or
- 3-node: *three KVPs* and *four subtrees* (possibly empty).

Order property: The keys at a node are between the keys in the subtrees.

• With this, search is much like in binary search trees.


Another structural property: All empty subtrees are at the same level.

• This is important to ensure small height.

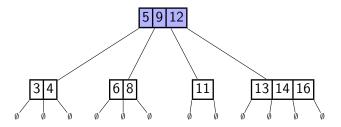
 TB changed recently: Changed order so that the "all empty on one level" is more prominent.

Biedl, Schost, Veksler (SCS, UW)

2-4 Tree example

Empty trees do not count towards height

- This tree has height 1
- Easy to show: Height is in $O(\log n)$, where n = # KVPs.
 - Layer *i* has at least 2^i nodes for $i = 0, \ldots, h$
 - Each node has at least one KVP.

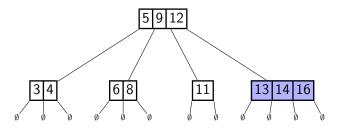

TB changed recently: Talk briefly about height here

Biedl, Schost, Veksler (SCS, UW)

2-4 Tree Operations

- Search is similar to BST:
 - Compare search-key to keys at node
 - If not found, recurse in appropriate subtree

Example: *search*(15)

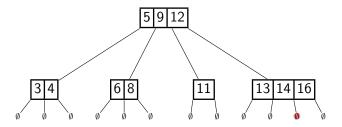


TB changed recently: Inserted search example

2-4 Tree Operations

- Search is similar to BST:
 - Compare search-key to keys at node
 - If not found, recurse in appropriate subtree

Example: search(15)



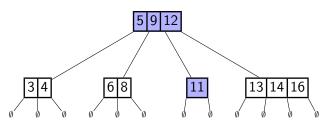
TB changed recently: Inserted search example

2-4 Tree Operations

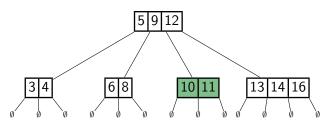
- Search is similar to BST:
 - Compare search-key to keys at node
 - If not found, recurse in appropriate subtree

Example: *search*(15) *not found*

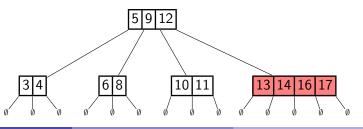
TB changed recently: Inserted search example

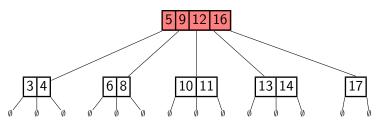

2-4 Tree operations

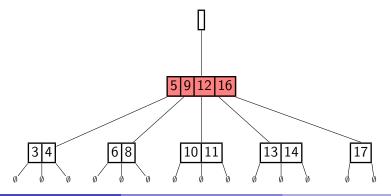
TB changed recently: For 24-tree operations, moved pseudo-code to *after* the example, and sketched ideas with the examples.

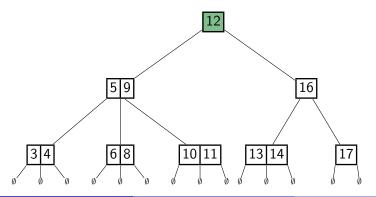

24Tree::search(k, v \leftarrow root, p \leftarrow NIL) k: key to search, v: node where we search, p: parent of v if v represents empty subtree 1 **return** "not found, would be in *p*" 2 3. Let $\langle T_0, k_1, \ldots, k_d, T_d \rangle$ be key-subtree list at v if $k > k_1$ 4. 5. $i \leftarrow$ maximal index such that $k_i < k$ 6. if $k_i = k$ 7. **return** key-value pair at k_i else 24Tree::search (k, T_i, v) 8. else 24Tree::search (k, T_0, v) 9.

Example: insert(10)


• Do 24Tree::search and add key and empty subtree at leaf.


- Do 24Tree::search and add key and empty subtree at leaf.
- If the leaf had room then we are done.


- Do 24Tree::search and add key and empty subtree at leaf.
- If the leaf had room then we are done.
- Else overflow: More keys/subtrees than permitted.
- Resolve overflow by node splitting.


- Do 24Tree::search and add key and empty subtree at leaf.
- If the leaf had room then we are done.
- Else overflow: More keys/subtrees than permitted.
- Resolve overflow by node splitting.

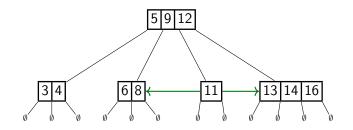
- Do 24Tree::search and add key and empty subtree at leaf.
- If the leaf had room then we are done.
- Else overflow: More keys/subtrees than permitted.
- Resolve overflow by node splitting.



- Do 24Tree::search and add key and empty subtree at leaf.
- If the leaf had room then we are done.
- Else overflow: More keys/subtrees than permitted.
- Resolve overflow by node splitting.

2-4 Tree operations

Biedl, Schost, Veksler (SCS, UW)


CS240 – Module 11

Winter 2021

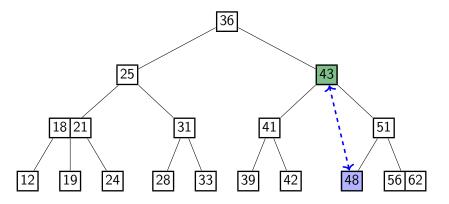
23 / 43

Towards 2-4 Tree Deletion

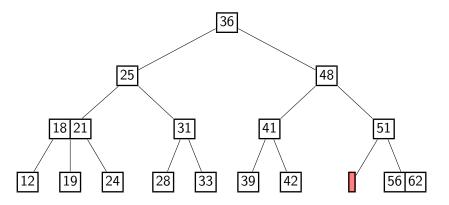
- For deletion, we symmetrically will have to handle **underflow** (too few keys/subtrees)
- Crucial ingredient for this: immediate sibling

• Observe: Any node except the root has an immediate sibling.

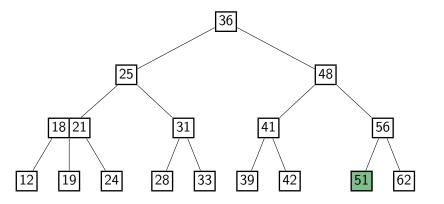
TB changed recently: This slide is new.


Biedl, Schost, Veksler (SCS, UW)

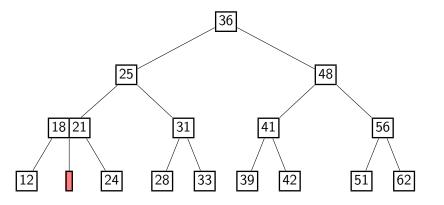
CS240 – Module 11


Winter 2021

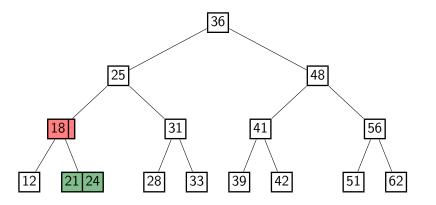
Example: delete(43)


• 24Tree::search, then trade with successor if KVP is not at a leaf.

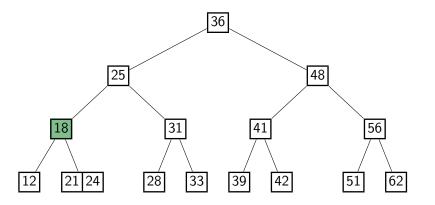
- 24Tree::search, then trade with successor if KVP is not at a leaf.
- If underflow:



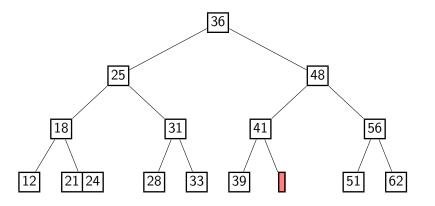
- 24Tree::search, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, rotate/transfer


Example: delete(19)

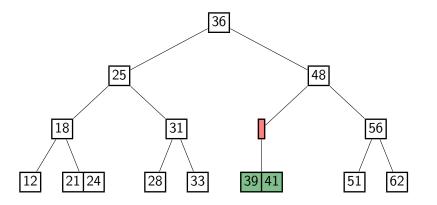
- 24Tree::search, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, rotate/transfer

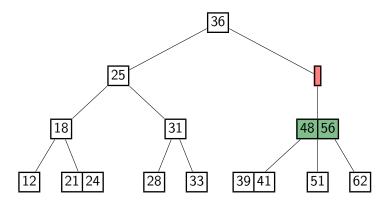

Example: delete(19)

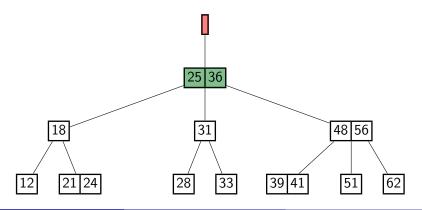
- 24Tree::search, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, rotate/transfer
 - Else node merge (this affects the parent!)

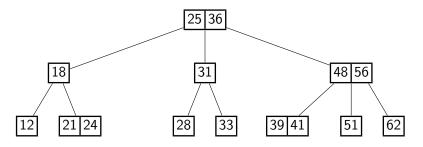


Example: delete(19)


- 24Tree::search, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, rotate/transfer
 - Else node merge (this affects the parent!)


- 24Tree::search, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, rotate/transfer
 - Else node merge (this affects the parent!)


- 24Tree::search, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, rotate/transfer
 - Else node merge (this affects the parent!)


- 24Tree::search, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, rotate/transfer
 - Else node merge (this affects the parent!)

- 24Tree::search, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, rotate/transfer
 - Else node merge (this affects the parent!)

- 24Tree::search, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, rotate/transfer
 - Else node merge (this affects the parent!)

Deletion from a 2-4 Tree

TB changed recently: Code had some errors (always swapped) and general cleanup.

24Tree::delete(k) $v \leftarrow 24Tree::search(k) // node containing k$ 1 if v is not leaf 2. 3. swap k with its successor k' and v with leaf containing k' delete k and one empty subtree in v4. 5. while v has 0 keys (underflow) 6. if parent p of v is NIL, delete v and break 7. if v has immediate sibling u with 2 or more keys (transfer/rotate) transfer the key of u that is nearest to v to p8. 9. transfer the key of p between u and v to vtransfer the subtree of u that is nearest to v to v10. break 11 12. else (merge & repeat) $u \leftarrow \text{immediate sibling of } v$ 13 14 transfer the key of p between u and v to utransfer the subtree of v to μ 15.

Biedl, Schost, Veksler (SCS, UW)

2-4 Tree summary

TB changed recently: This slide is new

- A 2-4 tree has height $O(\log n)$
 - ▶ In internal memory, all operations have run-time $O(\log n)$.
 - This is no better than AVL-trees in theory. (Though 2-4-trees are faster than AVL-trees in practice, especially when converted to binary search trees called *red-black trees*. No details.)
- A 2-4 tree has height Ω(log n)
 - Level i contains at most 4ⁱ nodes
 - Each node contains at most 3 KVPs
- So not significantly better than AVL-trees w.r.t. block transfers.
- But we can generalize the concept to decrease the height.

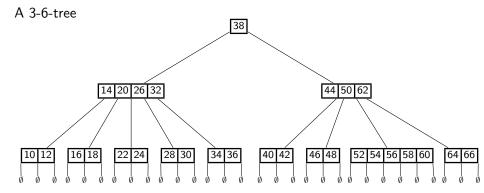
Outline

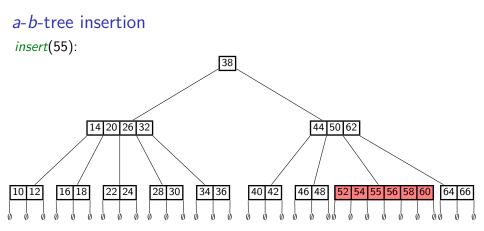
External Memory

- Motivation
- Stream-based algorithms
- External sorting
- External Dictionaries
- 2-4 Trees
- *a-b*-Trees
- B-Trees
- Extendible Hashing

a-b-Trees

A 2-4 tree is an *a*-*b*-tree for a = 2 and b = 4.

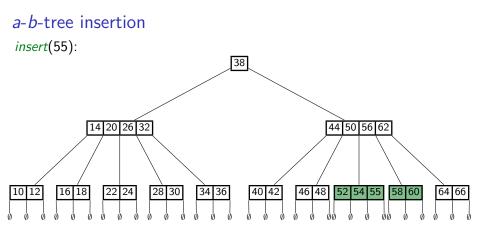

An *a-b-tree* satisfies:


- Each node has at least *a* subtrees, unless it is the root. The root has at least 2 subtrees.
- Each node has at most *b* subtrees.
- If a node has d subtrees, then it stores d-1 key-value pairs (KVPs).
- Empty subtrees are at the same level.
- The keys in the node are between the keys in the corresponding subtrees.

Requirement: $a \leq \lfloor b/2 \rfloor = \lfloor (b+1)/2 \rfloor$.

search, insert, delete then work just like for 2-4 trees, after re-defining underflow/overflow to consider the above constraints.

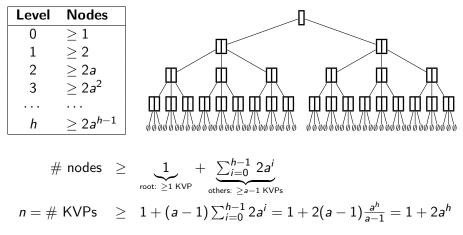
a-b-tree example



• Overflow now means b keys (and b+1 subtrees)

TB changed recently: Discussion of why the constraint on a.

CS240 – Module 11



- Overflow now means b keys (and b+1 subtrees)
- Node split \Rightarrow new nodes have $\geq \lfloor (b{-}1)/2 \rfloor$ keys
- Since we required $a \leq \lfloor (b+1)/2 \rfloor$, this is $\geq a-1$ keys as required.

TB changed recently: Discussion of why the constraint on a.

Height of an *a-b*-tree

Recall: n = numbers of KVPs (*not* the number of nodes) What is smallest possible number of KVPs in an *a*-*b*-tree of height-*h*?

Therefore the height of an *a*-*b*-tree is $O(\log_a(n)) = O(\log n / \log a)$.

TB changed recently: Added picture, shortened table

Biedl, Schost, Veksler (SCS, UW)

CS240 – Module 11

a-b-trees as implementations of dictionaries

Analysis (if entire *a*-*b*-tree is stored in internal memory):

- search, insert, and delete each requires visiting $\Theta(height)$ nodes
- Height is $O(\log n / \log a)$.
- Recall: $a \leq \lceil b/2 \rceil$ required for *insert* and *delete*
- \Rightarrow choose $a = \lfloor b/2 \rfloor$ to minimize the height.
 - Work at node can be done in $O(\log b)$ time.

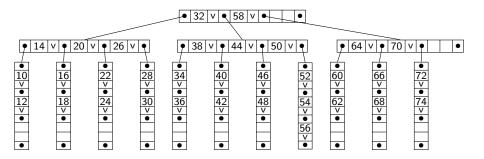
Total cost:
$$O\left(\frac{\log n}{\log a} \cdot (\log b)\right) = O(\log n \cdot \frac{\log b}{\log b - 1}) = O(\log n)$$

This is still no better than AVL-trees.

The main motivation for *a*-*b*-trees is *external memory*.

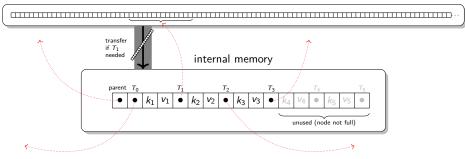
Outline

External Memory


- Motivation
- Stream-based algorithms
- External sorting
- External Dictionaries
- 2-4 Trees
- *a-b*-Trees
- B-Trees
- Extendible Hashing

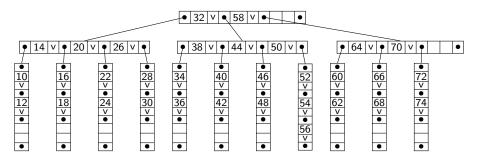
B-trees

A **B-tree** is an *a-b*-tree tailored to the external memory model.


- Every node is one block of memory (of size *B*).
- b is chosen maximally such that a node with b−1 KVPs (hence b−1 value-references and b subtree-references) fits into a block.
 b is called the order of the B-tree. Typically b ∈ Θ(B).

• a is set to be $\lceil b/2 \rceil$ as before.

B-tree in external memory


Close-up on one node in one block:

external memory

In this example: 17 computer-words fit into one block, so the B-tree can have order 6.

B-tree analysis

- search, insert, and delete each requires visiting $\Theta(height)$ nodes
- Work within a node is done in internal memory \Rightarrow no block-transfer.
- The height is $\Theta(\log_a n) = \Theta(\log_B n)$ (presuming $a = \lceil b/2 \rceil \in \Theta(B)$)

So all operations require $\Theta(\log_B n)$ block transfers.

B-tree summary

TB changed recently: this slide is new

- All operations require $\Theta(\log_B n)$ block transfers. This is asymptotically optimal.
- In practice, height is a small constant.
 - Say $n = 2^{50}$, and $B = 2^{15}$. So roughly $b = 2^{14}$, $a = 2^{13}$.
 - B-tree of height 4 would have $\geq 1 + 2a^4 > 2^{50}$ KVPs.
 - So height is 3.
- There are some variations that are even better in practice (no details).

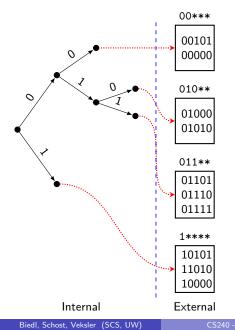
TB changed recently: Removed pre-emptive and B^+ -trees

B-trees are hugely important for storing data bases (→ cs448)

Outline

External Memory

- Motivation
- Stream-based algorithms
- External sorting
- External Dictionaries
- 2-4 Trees
- *a-b*-Trees
- B-Trees
- Extendible Hashing


Dictionaries for Integers in External Memory

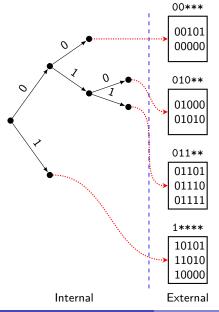
- Recall: Direct Addressing allowed for O(1) insert and delete if keys are integers in $\{0, \ldots, M-1\}$
- If keys are too big, use hashing to map them to (smaller) integers.
- Expected run-time of operations is O(1) if load factor α is kept small
- This does not adapt well to external memory.
 - We must occasionally re-hash to keep α small.
 - ► And re-hashing must load *all* n/B blocks.
 - This is unacceptably slow.
- Goal: Data structure for integers that typically uses O(1) block transfers, and never needs to load all blocks.
- Idea: Store trie of links to blocks of integers.

(This is also called **extendible hashing**, because its primary use is for dictionaries that store integers that result from hashing.)

TB changed recently: Various rewordings; emphasize that re-hashing is real problem.

Trie of blocks - Overview

Assumption: We store non-negative integers (here always written as bit-strings).

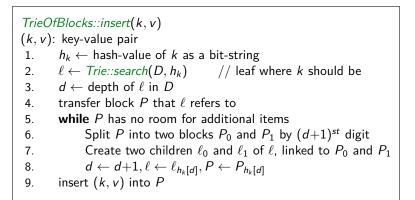

TB changed recently: Removed $(.)_2$ notation; all passed integers are now assumed to be bitstrings.

Build trie D (the **directory**) of integers in internal memory.

Stop splitting in trie when remaining items fit in one block.

Each leaf of D refers to block of external memory that stores the items.

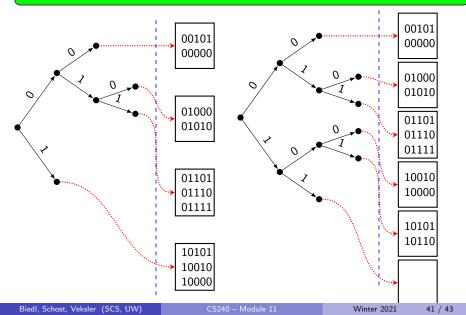
Trie of blocks - operations



search(k): Search for k in D until we reach leaf ℓ . Load block at ℓ and search in it. **1 block transfer**.

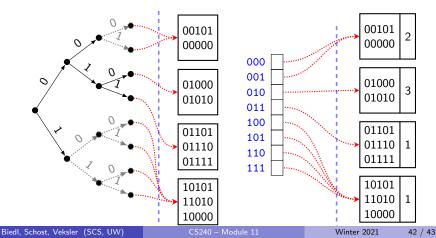
insert(k): Search for k, load block, then insert k. If this exceeds block-capacity, split at trie-node and split blocks (possibly repeatedly). **Typically** 2 **block transfers**.

delete(k): Search for k, load block, then delete k. Optional: combine underfull blocks. **2 block transfers**.


Trie of blocks: Insert

Note: This may create empty blocks, but this should be rare.

insert(10110)


TB changed recently: Corrected one bitstring

Extendible hashing: saving space

We can save links (hence space in internal memory) with two tricks:

- Expand the trie so that all leaves have the same global depth d_D .
- Store *only* the leaves, and in an array D of size 2^{d_D} .
- Operations work as before if each block stores its **local depth**, i.e., the depth of the original trie-node that referred to it.

Extendible hashing discussion

• Hashing collisions (= duplicate keys) are resolved within the block and do not affect the block transfers.

If more items collide than can fit into a block we

extend the hash-function, i.e., make bit-strings longer without changing the initial bits.

TB changed recently: We previously were vague (and incorrect) about what to do with too many collisions.

- Directory is much smaller than total number of stored keys
 → should fit in internal memory.
 If it does not, then strategies similar to B-trees can be applied.
- Only 1 or 2 block transfers expected for *any* operation.
- To make more space, we only add one block.
 Rarely change the size of the directory.
 Never have to move all items. (in contrast to re-hashing!)
- Space usage is not too inefficient: one can show that under uniform distribution assumption each block is expected to be 69% full.