CS 240 - Data Structures and Data Management

Module 11: External Memory - enriched

T. Biedl É. Schost O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo
Winter 2021

Outline

(1) External Memory

- Red-black trees
- Pre-emptive splitting/merging
- B^{+}-trees

Outline

(1) External Memory

- Red-black trees
- Pre-emptive splitting/merging
- B^{+}-trees

Towards red-black-tree

(We currently only consider run-time in RAM. We will return to the EMM shortly.)

- Recall: All operations in 2-4 trees have $O(\log n)$ worst-case run-time.
- The height is much smaller than for AVL-trees $\left(\log _{2}\left(\frac{n+1}{2}\right)\right.$ vs. $\log _{\phi}(n) \approx 1.44 \log _{2} n$.)
- So they might be more efficient, depending on implementation details.
- But: Handling three kinds of nodes is cumbersome. (We either need a list for KVPs and subtrees, or waste space at nodes to have space for links always available.)

Better idea: Design a class of binary search trees that mirrors 2-4-trees!

2-4-tree to red-black-tree

Converting a 2-4-tree:

- A d-node becomes a black node with $d-1$ red children (Assembled so that they form a BST of height at most 1.)

2-4-tree to red-black-tree

Converting a 2-4-tree:

- A d-node becomes a black node with $d-1$ red children (Assembled so that they form a BST of height at most 1.)

Resulting properties:

- Any red node has a black parent.
- Any empty subtree T has the same black-depth (number of black nodes on path from root to T)

Red-black-trees

Definition: A red-black tree is a binary search tree such that

- Every node has a color (red or black)
- Every red node has a black parent. (In particular the root is black.)
- Any empty subtree T has the same black-depth.

Note: Can store this with one bit overhead per node.

Red-black tree

Rather than proving properties directly, we re-use properties of 2-4-trees.
Lemma: Any red-black tree T can be converted into a 2-4-tree T^{\prime} where $\operatorname{height}\left(T^{\prime}\right)=\operatorname{black}-\operatorname{depth}(T)-1$.

Red-black tree

Rather than proving properties directly, we re-use properties of 2-4-trees.
Lemma: Any red-black tree T can be converted into a 2-4-tree T^{\prime} where $\operatorname{height}\left(T^{\prime}\right)=\operatorname{black}-\operatorname{depth}(T)-1$.

Proof:

- Black node with $0 \leq d \leq 2$ red children becomes a ($d+1$)-node

Red-black tree properties

- Red-black trees have height $\leq 2 \log \left(\frac{n+1}{2}\right)+1$
- black-depth $\leq \log \left(\frac{n+1}{2}\right)+1$ by 2 -4-tree height.
- At least half of the nodes on the path to deepest nodes are black (recall: red nodes have black parents)
\Rightarrow height $=\#$ nodes on path - $1 \leq 2$ black-depth - 1

Red-black tree properties

- Red-black trees have height $\leq 2 \log \left(\frac{n+1}{2}\right)+1$
- black-depth $\leq \log \left(\frac{n+1}{2}\right)+1$ by 2 -4-tree height.
- At least half of the nodes on the path to deepest nodes are black (recall: red nodes have black parents)
\Rightarrow height $=\#$ nodes on path $-1 \leq 2$ black-depth - 1
- insert/delete can be done as for 2-4-trees.
- One can "translate" the code directly to red-black trees.
- The transfer/split/merge operations become rotations.
- So all operations take $\Theta(\log n)$ worst-case time.
- In the worst case, $\Theta(\log n)$ rotations are required for insert/delete.
- But experiments show that few rotations usually suffice, and red-black trees are faster than AVL-trees.

Red-black tree properties

- Red-black trees have height $\leq 2 \log \left(\frac{n+1}{2}\right)+1$
- black-depth $\leq \log \left(\frac{n+1}{2}\right)+1$ by 2 - 4 -tree height.
- At least half of the nodes on the path to deepest nodes are black (recall: red nodes have black parents)
\Rightarrow height $=\#$ nodes on path $-1 \leq 2$ black-depth - 1
- insert/delete can be done as for 2-4-trees.
- One can "translate" the code directly to red-black trees.
- The transfer/split/merge operations become rotations.
- So all operations take $\Theta(\log n)$ worst-case time.
- In the worst case, $\Theta(\log n)$ rotations are required for insert/delete.
- But experiments show that few rotations usually suffice, and red-black trees are faster than AVL-trees.

This is a very efficient balanced binary search tree.
(There are even better balanced binary search trees. No details.)

Outline

(1) External Memory

- Red-black trees
- Pre-emptive splitting/merging
- B^{+}-trees

Pre-emptive splitting/merging

- Observe: BTree::insert (k, v) traverses tree twice:
- Search down on a path to the leaf where we add (k, v).
- Go back up on the path to fix overflow, if needed.
- So the number of block-transfers could be twice the height.
- How can we avoid this?

Pre-emptive splitting/merging

- Observe: BTree::insert (k, v) traverses tree twice:
- Search down on a path to the leaf where we add (k, v).
- Go back up on the path to fix overflow, if needed.
- So the number of block-transfers could be twice the height.
- How can we avoid this?
- Idea: During the search, always split if the node is full.
- Then a node split at the leaf does not create an overfull parent.

Pre-emptive splitting/merging example
PreemptiveBTree::insert(49):

- If node is not full, keep searching.

Pre-emptive splitting/merging example PreemptiveBTree::insert(49):

- If node is not full, keep searching.
- If node is full, immediately split.

Pre-emptive splitting/merging example

 PreemptiveBTree::insert(49):

- If node is not full, keep searching.
- If node is full, immediately split.
- Then keep searching in appropriate new node.

Pre-emptive splitting/merging example

 PreemptiveBTree::insert(49):

- If node is not full, keep searching.
- If node is full, immediately split.
- Then keep searching in appropriate new node.
- We may have split unnecessarily. (But space is cheap.)

Pre-emptive splitting/merging example

 PreemptiveBTree::insert(49):

- If node is not full, keep searching.
- If node is full, immediately split.
- Then keep searching in appropriate new node.
- We may have split unnecessarily. (But space is cheap.)

Pre-emptive splitting/merging example

 PreemptiveBTree::insert(49):

- If node is not full, keep searching.
- If node is full, immediately split.
- Then keep searching in appropriate new node.
- We may have split unnecessarily. (But space is cheap.)
- Similarly delete should pre-emptively merge. (No details.)
- With this, we no longer need parent-references.

Outline

(1) External Memory

- Red-black trees
- Pre-emptive splitting/merging
- B^{+}-trees

Towards B^{+}-trees

' Two types of tree-structures, depending on where values are stored.

Towards B^{+}-trees

' Two types of tree-structures, depending on where values are stored.
Storage-variant: Every node stores a KVP.

Towards B^{+}-trees

' Two types of tree-structures, depending on where values are stored.
Storage-variant: Every node stores a KVP.

Decision-variant: All KVPs at leaves, internal nodes/edges guide search.

Towards B^{+}-trees

- For storage-variant, there usually exists an equivalent decision-variant.

- For example for binary search trees:
- Choose a tree with n leaves where internal nodes have 2 children.
- Internal nodes store minimum in right subtree.
- Rotations now also update split-lines.

We have seen a similar construction in priority search trees.

- In internal memory, decision-tree variants waste space (typically \approx twice as many nodes)

Towards B^{+}-trees

In a B-tree, each node is one block of memory. In this example, up to 10 keys/references fit into one block, so the order is 4.

This B-tree could store up to 63 KVPs with height 2.

Two ideas to achieve smaller height:

(1) The leaves are wasting space for references that will never be used.
(2) Use a decision-tree version \Rightarrow inner nodes can have more children.

B^{+}-trees

- Each node is one block of memory.
- All KVPs are stored at leaves. Each leaf is at least half full.
- Interior nodes store only keys for comparison during search.
- Interior (non-root) nodes have at least half of the possible subtrees.
- insert/delete use pre-emptive splitting/merging.

This B^{+}-tree could store up to 125 KVPs with height 2.

B^{+}-trees in external memory

Recall: Close-up on one node of a regular B-tree:

In this example: 17 computer-words fit into one block, so the B-tree can have order 6 .

B^{+}-tree in external memory

Contrast with: Close-up on one interior node of a B^{+}-tree:

In this example: 17 computer-words fit into one block, so the B^{+}-tree can have order 9.

B^{+}-tree summary

- Order is typically a factor of $\frac{3}{2}$ bigger than for B-trees.
- B^{+}-tree needs to store \approx twice as many keys

B^{+}-tree summary

- Order is typically a factor of $\frac{3}{2}$ bigger than for B-trees.
- B^{+}-tree needs to store \approx twice as many keys
- Height-comparison (where b is the order of the B-tree):

$$
\begin{array}{ccc}
B^{+} \text {-tree } & \text { vs. } & B \text {-tree } \\
\hline \log _{\frac{3}{2} b}(2 n) & & \log _{b}(n)
\end{array}
$$

B^{+}-tree summary

- Order is typically a factor of $\frac{3}{2}$ bigger than for B-trees.
- B^{+}-tree needs to store \approx twice as many keys
- Height-comparison (where b is the order of the B-tree):

B^{+}-tree	vs.
$\log _{\frac{3}{2} b}(2 n)$	B-tree
$\log _{b}(n)$	
$\frac{\log n+1}{\log b+\underbrace{\log (3 / 2)}_{\approx 0.7}}<\frac{\log n}{\log b}$	

B^{+}-tree summary

- Order is typically a factor of $\frac{3}{2}$ bigger than for B-trees.
- B^{+}-tree needs to store \approx twice as many keys
- Height-comparison (where b is the order of the B-tree):

B^{+}-tree	vs.
$\log _{\frac{3}{2} b}(2 n)$	B-tree
$\log _{b}(n)$	
$\frac{\log n+1}{\log b+\underbrace{\log (3 / 2)}_{\approx 0.7}}$	$<\frac{\log n}{\log b}$

- B^{+}-trees have smaller height, and use only one pass.
- Best for storing huge dictionaries in external memory.
(For data base implementations, there are further tricks such as linking the leaves as a list. See cs448 for details.)

