
CS 240E: Structures and Data Management Winter 2021

Tutorial 4: Amortized Analysis and Skip Lists

1. A binary n-bit counter stores the current value of a counter as an array A of length n that contains 0
or 1. It supports the operation Increment, which adds 1 to the counter and operates as shown below:

void Increment(A, n) {

// A is an n-bit counter whose

// value is less than 2^n - 1

i <- 1

while (A[n-i] != 0) {

A[n-i] <- 0

i <- i + 1

}

A[n-i] <- 1

}

The running time for Increment(A,n) is Θ(k), where k is the final value of variable i. This is Θ(n) in the
worst case. Argue that the amortised cost of Increment(A,n) is Θ(1)

2. Show that for a skip list with n keys, the probability that the height exceeds 3 log n is at most 1/n2.

3. In this problem, we will explore an alternate implementation of a min-ordered priority queue. That is,
implement a data structure such that inserting a new element into the priority queue takes O(log n) expected
time, while deleting the minimum element from the priority queue takes O(1) expected time. Hint: use skip
lists.

4. Optional. Recall that a binary search tree is called perfectly balanced if for every node v we have

|v.left.size− v.right.size| ≤ 1,

i.e., the size-difference between the left and right is as small as possible. Show that in any perfectly balanced
binary search tree T , the leaves are only on the bottom two levels.

Hint: First consider the case where n = 2k − 1 for some integer k. Then consider the case where n = 2k for
some integer k. Finally for arbitrary n, let let k be the integer with 2k ≤ n < 2k+1. In all three cases, what
are the sizes of the subtrees, and hence where are the leaves, relative to k?

1

