
CS 240E: Structures and Data Management Winter 2021

Tutorial 5: Splay trees and Interpolation search

Warmup. Given the following splay tree S, calculate its potential using the potential function

Φ(i) :=
∑
v∈S

log n(i)
v ,

where ni
v is the number of nodes in the subtree rooted at v after i operations, including v itself. Insert the

key 18. Calculate the new potential. Verify that the difference between the potential difference is less than
4 log n− 2R + 2, where R is the number of rotations.

20

10

5 15

12 17

16 19

25

1. Let A be an unordered array with n distinct items k0, ..., kn−1. Give an asymptotically tight Θ-bound
on the expected access cost if you put A in the optimal static order for the folliwng probability distributions:

(a) pi = 1
n for 1 ≤ i ≤ n− 1

(b) pi = 1
2i+1 , for 1 ≤ i ≤ n− 2, pn−1 = 1−

∑n−2
i=0 pi = 1

2n−1

2. This assignment will guide you towards a proof that a different modification of interpolation search also
has expected run-time O(log log n). Consider the modification shown in Algorithm 1 below, which compares
not only at A[m], but also at two indices m` and mr that are roughly

√
N indices to the left and right of m

(where N = r − l), and repeats in the appropriate sub-array.

Algorithm 1: interpolation-search-3way(A,n, k)

1 Input: Sorted array A of n integers, key k if (k < A[0]) then return “not found, would be left of
index 0”;

2 if (k > A[n− 1]) then return “not found, would be right of index n−1”;
3 if (k = A[n− 1]) then return “found at index n−1”;
4 `← 0, r ← n− 1 ;
5 while (N ← (r − `) ≥ 2) do // inv: A[`] ≤ k < A[r]

6 m← ` + b k−A[`])
A[r]−A[`] · (r − `)c ;

7 m` ← max{`,m− b
√
N}; mr ← min{r,m + b

√
Nc};

8 if (k < A[m`]) then r ← m`;
9 else if (k < A[m] then `← m`, r ← m;

10 else if (k < A[mr] then `← m, r ← mr;
11 else `← mr;

12 end
13 if (k = A[`]) then return “found at index `”;
14 else return “not found, would be between index ` and ` + 1”;

1



Tutorial 5: Splay trees and Interpolation search 2

a) Assume that the items in A were randomly and uniformly chosen. Consider one execution of the while-
loop, and call search-key k good A[m`] ≤ k < A[mr] and bad otherwise. Show that P (k is good) ≥ 3

4 .

You may assume that all items in A are distinct. You may also ignore rounding issues, i.e., assume N

is a perfect-square and (r − `) k−A[`]
A[r]−A[`] is an integer.

(Hint: Define idx(k) and offset(k) as we did in class and use the properties of offset(k) that we derived
there.)

b) Let T (n) be the expected run-time on n items if items in A were randomly and uniformly chosen,
Argue that T (n) satisfies the recursion T (n) ≤ T (

√
n) + O(1).

You may make the same assumptions as in the previous part, and also use without proof that T (n) is
monotone, i.e., T (n− 1) ≤ T (n).

Hint: What is the run-time if k is good? What if k is bad?

Note that the last part implies that T (n) ∈ O(log log n) as shown in class.

For all parts, you may use previous parts even if you did not prove them.


