CS 240E: Structures and Data Management

Winter 2021

Tutorial 5: Splay trees and Interpolation search

Warmup. Given the following splay tree S, calculate its potential using the potential function

$$\Phi(i) := \sum_{v \in S} \log n_v^{(i)}$$

where n_v^i is the number of nodes in the subtree rooted at v after i operations, including v itself. Insert the key 18. Calculate the new potential. Verify that the difference between the potential difference is less than $4 \log n - 2R + 2$, where R is the number of rotations.

1. Let A be an unordered array with n distinct items $k_0, ..., k_{n-1}$. Give an asymptotically tight Θ -bound on the expected access cost if you put A in the optimal static order for the following probability distributions:

(a) $p_i = \frac{1}{n}$ for $1 \le i \le n - 1$

(b)
$$p_i = \frac{1}{2^{i+1}}$$
, for $1 \le i \le n-2$, $p_{n-1} = 1 - \sum_{i=0}^{n-2} p_i = \frac{1}{2^{n-1}}$

2. This assignment will guide you towards a proof that a different modification of interpolation search also has expected run-time $O(\log \log n)$. Consider the modification shown in Algorithm 1 below, which compares not only at A[m], but also at two indices m_{ℓ} and m_r that are roughly \sqrt{N} indices to the left and right of m (where N = r - l), and repeats in the appropriate sub-array.

Algorithm 1: *interpolation-search-3way*(A, n, k)

1 Input: Sorted array A of n integers, key k if (k < A[0]) then return "not found, would be left of index 0"; **2** if (k > A[n-1]) then return "not found, would be right of index n-1"; **3** if (k = A[n-1]) then return "found at index n-1"; 4 $\ell \leftarrow 0, r \leftarrow n-1$; 5 while $(N \leftarrow (r - \ell) \ge 2)$ do 6 $m \leftarrow \ell + \lfloor \frac{k - A[\ell]}{A[r] - A[\ell]} \cdot (r - \ell) \rfloor;$ // inv: $A[\ell] \le k < A[r]$ $m_{\ell} \leftarrow \max\{\ell, m - |\sqrt{N}\}; m_r \leftarrow \min\{r, m + |\sqrt{N}|\};$ 7 if $(k < A[m_{\ell}])$ then $r \leftarrow m_{\ell}$; 8 else if (k < A[m] then $\ell \leftarrow m_{\ell}, r \leftarrow m$; 9 else if $(k < A[m_r]$ then $\ell \leftarrow m, r \leftarrow m_r$; 10 else $\ell \leftarrow m_r$; 11 12 end 13 if $(k = A[\ell])$ then return "found at index ℓ "; 14 else return "not found, would be between index ℓ and $\ell + 1$ ";

a) Assume that the items in A were randomly and uniformly chosen. Consider one execution of the while-loop, and call search-key k good A[m_ℓ] ≤ k < A[m_r] and bad otherwise. Show that P(k is good) ≥ ³/₄. You may assume that all items in A are distinct. You may also ignore rounding issues, i.e., assume N is a perfect-square and (r - ℓ) ^{k-A[ℓ]}/_{A[r]-A[ℓ]} is an integer.

(Hint: Define idx(k) and offset(k) as we did in class and use the properties of offset(k) that we derived there.)

b) Let T(n) be the expected run-time on n items if items in A were randomly and uniformly chosen, Argue that T(n) satisfies the recursion $T(n) \leq T(\sqrt{n}) + O(1)$.

You may make the same assumptions as in the previous part, and also use without proof that T(n) is monotone, i.e., $T(n-1) \leq T(n)$.

Hint: What is the run-time if k is good? What if k is bad?

Note that the last part implies that $T(n) \in O(\log \log n)$ as shown in class.

For all parts, you may use previous parts even if you did not prove them.