CS 240E: Structures and Data Management

Tutorial 5: Splay trees and Interpolation search

Warmup. Given the following splay tree S, calculate its potential using the potential function

$$
\Phi(i):=\sum_{v \in S} \log n_{v}^{(i)}
$$

where n_{v}^{i} is the number of nodes in the subtree rooted at v after i operations, including v itself. Insert the key 18. Calculate the new potential. Verify that the difference between the potential difference is less than $4 \log n-2 R+2$, where R is the number of rotations.

1. Let A be an unordered array with n distinct items k_{0}, \ldots, k_{n-1}. Give an asymptotically tight Θ-bound on the expected access cost if you put A in the optimal static order for the folliwng probability distributions:
(a) $p_{i}=\frac{1}{n}$ for $1 \leq i \leq n-1$
(b) $p_{i}=\frac{1}{2^{i+1}}$, for $1 \leq i \leq n-2, p_{n-1}=1-\sum_{i=0}^{n-2} p_{i}=\frac{1}{2^{n-1}}$
2. This assignment will guide you towards a proof that a different modification of interpolation search also has expected run-time $O(\log \log n)$. Consider the modification shown in Algorithm 1 below, which compares not only at $A[m]$, but also at two indices m_{ℓ} and m_{r} that are roughly \sqrt{N} indices to the left and right of m (where $N=r-l$), and repeats in the appropriate sub-array.
```
Algorithm 1: interpolation-search-3way \((A, n, k)\)
    Input: Sorted array \(A\) of \(n\) integers, key \(k\) if \((k<A[0])\) then return "not found, would be left of
    index 0";
    if ( \(k>A[n-1]\) ) then return "not found, would be right of index \(n-1\) ";
    if \((k=A[n-1])\) then return "found at index \(n-1\) ";
    \(\ell \leftarrow 0, r \leftarrow n-1 ;\)
    while \((N \leftarrow(r-\ell) \geq 2)\) do \(\quad / /\) inv: \(A[\ell] \leq k<A[r]\)
        \(m \leftarrow \ell+\left\lfloor\frac{k-A[\ell])}{A[r]-A[\ell]} \cdot(r-\ell)\right\rfloor ;\)
        \(m_{\ell} \leftarrow \max \left\{\ell, m-\lfloor\sqrt{N}\} ; m_{r} \leftarrow \min \{r, m+\lfloor\sqrt{N}\rfloor\} ;\right.\)
        if \(\left(k<A\left[m_{\ell}\right]\right)\) then \(r \leftarrow m_{\ell}\);
        else if \(\left(k<A[m]\right.\) then \(\ell \leftarrow m_{\ell}, r \leftarrow m\);
        else if \(\left(k<A\left[m_{r}\right]\right.\) then \(\ell \leftarrow m, r \leftarrow m_{r}\);
        else \(\ell \leftarrow m_{r}\);
    end
    if ( \(k=A[\ell]\) ) then return "found at index \(\ell\) ";
    else return "not found, would be between index \(\ell\) and \(\ell+1\) ";
```

a) Assume that the items in A were randomly and uniformly chosen. Consider one execution of the whileloop, and call search-key k good $A\left[m_{\ell}\right] \leq k<A\left[m_{r}\right]$ and bad otherwise. Show that $P(k$ is good $) \geq \frac{3}{4}$. You may assume that all items in A are distinct. You may also ignore rounding issues, i.e., assume N is a perfect-square and $(r-\ell) \frac{k-A[\ell]}{A[r]-A[\ell]}$ is an integer.
(Hint: Define $i d x(k)$ and $\operatorname{off} s e t(k)$ as we did in class and use the properties of offset (k) that we derived there.)
b) Let $T(n)$ be the expected run-time on n items if items in A were randomly and uniformly chosen, Argue that $T(n)$ satisfies the recursion $T(n) \leq T(\sqrt{n})+O(1)$.
You may make the same assumptions as in the previous part, and also use without proof that $T(n)$ is monotone, i.e., $T(n-1) \leq T(n)$.
Hint: What is the run-time if k is good? What if k is bad?

Note that the last part implies that $T(n) \in O(\log \log n)$ as shown in class.
For all parts, you may use previous parts even if you did not prove them.

