CS 240E: Structures and Data Management

Tutorial 6: Tries, Hashing

Warmup. Draw the compressed trie containing the following keys: 10, 101, 1001, 10010, 10011, 1110, 1111, 11100, 111110, 111101.

1. Consider sorting the following base-4-numbers: $300,211,112,230,1,0,12,101,233,110$.
a) Illustrate how you would sort them with MSD-radix sort, by drawing the recursion tree and the subarray in each recursion.
b) Show the corresponding 4-way pruned trie.
c) Show that the expected time to insert a base-4-number into a 4 -way pruned trie is less than $\log _{4} n+O(1)$, assuming all numbers have been uniformly chosen. You may assume the numbers have been padded with 0s so that all numbers begin with the same place value.
2. Consider a hash table of size 7 . For each of the scenarios below, insert the keys $14,10,20,13,7,17$, then delete 14 and search for 13 .
a) Linear Probing with $h(k)=k \bmod 7$.
b) Double Hashing with $h_{1}(k)=k \bmod 7$ and $h_{2}(k)=(k \bmod 5)+1$.
3. Suppose that we use double hashing to resolve collisions, i.e., we use the hash function $h(k, i)=$ $\left(h_{1}(k)+i h_{2}(k)\right) \bmod m$. Show that if m and $h_{2}(k)$ have greatest common divisor $d \geq 1$ for some key k, then an unsuccessful insertion for key k examines $\frac{1^{t h}}{d}$ of the hash table before returning to slot $h_{1}(k)$. Thus, when $d=1$, i.e., m and $h_{2}(k)$ are relatively prime, then the insertion of k can only fail if every entry of the hash table is occupied.
