## Tutorial 7: More Hashing, Quad-trees

1. Design a dictionary data structure to store key-value-pairs with uniformly distributed integer keys such that the operations for search, insert, and delete have worst case $O(\log n)$ runtime and $O(1)$ expected runtime (ignoring rehashing).
2. Assume that $p_{1}, \ldots, p_{n}$ are $n$ distinct points in 2 D , and that the coordinates of each $p_{i}$ are 32-bit 01-strings. Give an algorithm that builds a quad-tree of these points in $O(n)$ time.
3. Build a quadtree using the following points: $(1,4),(2,5),(3,2),(4,7),(7,3),(6,1),(5,6),(3,7)$.
4. Let $S$ be a quadtree consisting of 2 d points. Given a radius $r$ and a center $p$, method ballRangeQuery $(S, p, r)$ returns all points in $S$ with Euclidean distance from point $p$ less than or equal to $r$. Describe how to implement method ballRangeQuery $(S, p, r)$ with a quadtree. Explain the idea and the worst case complexity of your algorithm. You can assume you have a $O(1)$ method that tells you whether a query cirle $A$ and a rectangular region $B$ intersect.
