Tutorial 9: Range trees

1. Consider the following points being stored in a 2 D range tree: $(2,12),(17,77),(23,92),(40,47),(55,91)$, $(67,27),(89,79),(99,53),(10,23),(35,7),(61,40),(95,56),(22,42),(88,15),(42,2)$.
a) Draw the x-BST for this range tree.
b) Draw the corresponding y-BSTs for the points $(88,15),(61,40)$ and $(67,27)$.
c) Perform a range-search with the query rectangle $[35,90] \times[5,30]$, indicating the boundary and topmost inside nodes.
2. Show how to find all points greater than or equal to y in a binary heap in $O(1+s)$ time, where s is the number of reported points.
3. Show how to build a priority search tree in $O(n \log n)$ worst-case time.
