
University of Waterloo

CS240E, Winter 2022

Written Assignment 1

Due Date: Wednesday, January 19, 2022 at 5pm

Be sure to read the assignment guidelines (http://www.student.cs.uwaterloo.ca/

~cs240e/w22/guidelines.pdf). Submit your solutions electronically as a PDF with file
name a1sol.pdf using MarkUs. We will also accept individual question files named a1q1.pdf,
a1q2.pdf, . . . if you wish to submit questions as you complete them.

Question 0 Academic Integrity Declaration

Read, sign and submit A01-AID.txt now or as soon as possible. Failure to do so will result
in 0 marks on the entire assignment.

Question 1 [5 marks]

There are two different definitions of ‘little-omega’ in the literature (to distinguish them, we
will call them ω0 and ω1 here). Fix two functions f(x), g(x). We say that

• f(x) ∈ ω0(g(x)) if for all c > 0 there exists n0 > 0 such that |f(x)| ≥ c|g(x)| for all
x ≥ n0, and

• f(x) ∈ ω1(g(x)) if g(x) ∈ o(f(x)).

Show that these two definitions are equivalent, i.e., f(x) ∈ ω0(g(x)) if and only if f(x) ∈
ω1(g(x)). Your proof must be from first principle, i.e., directly using the definitions (do not
use the limit-rule). Note that f(x), g(x) are not necessarily positive.

Question 2 [3+3+8=14 marks]

Consider the following (rather strange) code-fragment:

Algorithm 1: mystery (int n)

Input: n ≥ 2
1 L← blog(log(n))c
2 print all subsets of {1, . . . , 2L}

For example, for n = 17, we have log 17 ≈ 4.08 and log(4.08) ≈ 2.02, so log log(17) ≈ 2.02
and L = 2 (and we print the 16 subsets of {1, . . . , 4}). This question is really asking about
the run-time of mystery, but to avoid having to deal with constants, define f(n) to be the
number of subsets that we are printing when calling mystery with parameter n.

1

http://www.student.cs.uwaterloo.ca/~cs240e/w22/guidelines.pdf
http://www.student.cs.uwaterloo.ca/~cs240e/w22/guidelines.pdf

(a) Show that f(n) ∈ O(n).

(b) Show that f(n) ∈ Ω(
√
n).

(c) Prof. Conn Fused thinks that f(n) ∈ Θ(nd) for some constant d. (By the previous two
parts, necessarily 1

2
≤ d ≤ 1.) Show that Prof. Fused is wrong, or in other words, for

any 1
2
≤ d ≤ 1 we have f(n) 6∈ Θ(nd).

Question 3 [2+6+4=12 marks]

To reduce the height of the heap one could use a d-way heap. This is a tree where each
node contains up to d children, all except the bottommost level are completely filled, and
the bottommost level is filled from the left. It also satisfies that the key at a parent is no
smaller than the keys at all its children.

a) Explain how to store a d-way heap in an array A of size O(n) such that the root is
at A[0]. Also state how you find parents and children of the node stored at A[i]. You
need not justify your answer.

b) What is the height of a d-ary heap on n nodes? Give a tight asymptotic bound that
depends on d and n. You may assume that n and d are sufficiently big (e.g. d ≥ 3 and
n ≥ 10). Note that d is not necessarily a constant.

c) Assume that n ≥ 4 is a perfect square. What is the height of a d-ary heap for d =
√
n?

Give an exact bound (i.e., not asymptotic).

Question 4 [9 marks]

Consider a (max-oriented) meldable heap H that holds n integers. Describe an algorithm
that is given H and an integer x, and that finds all items in H for which the priority is
at least x. (Note that x may or may not be in H.) Your algorithm should have O(1 + s)
worst-case run-time, where s is the number of items that were found.

Question 5 [3+7(+5)=10(+5) marks]

How would you implement increaseKey(v, k) in a binomial heap? The method is given two
parameters: a node v and the new value k that its key should have.

a) Prof. Dodo thinks he can implement this using fix-up as shown in Algorithm 2).

Show that Prof. Dodo is incorrect. Thus, give an example of a flagged tree that satisfies
the binomial-heap-order property, indicate a node v and a key k > v.key, and show
that calling increaseKey(v, k) with the code in Algorithm 2 would result in a flagged
tree that does not satisfy the binomial-heap-order property. (Try to keep your tree
small, no more than 16 nodes.)

2

Algorithm 2: increaseKey(v, k)

1 if (k > v.key()) then
2 v.key ← k

// perform fix-up

3 while p← v.parent is not NIL and p.key < v.key do
4 swap key-value pairs of v and p
5 v ← p

b) Give an implementation of increaseKey in a binomial heap that has worst-case run-time
O(log n).

c) (Bonus) Give an implementation of decreaseKey in a binomial heap, and state a tight
run-time bound. Make your implementation as efficient as you can (the amount of
bonus-marks given will depend on the asymptotic bound that you achieve).

3

	Academic Integrity Declaration
	[5 marks]
	[3+3+8=14 marks]
	[2+6+4=12 marks]
	[9 marks]
	[3+7(+5)=10(+5) marks]

