University of Waterloo
CS240E, Winter 2022

Assignment 2
Due Date: Wednesday, February 2, 2022 at 5pm

Be sure to read the assignment guidelines (http://www.student.cs.uwaterloo.ca/
~cs240e/w22/guidelines/guidelines.pdf)). Submit your solutions electronically with in-
dividal PDF files named a2ql.pdf, a2q2.pdf, ... (one per question).

Two policies specifically for Assignment 2: For some questions you may find helper-
routines from predecessor-courses helpful. If the helper-routine is in the course notes (even
if we have not gone over it), you may use it without giving details.

Also, for this assignment you cannot compute logarithms or exponentiations in
constant time; you need to compute these from scratch as you need them.

Question 0 Academic Integrity Declaration

Read, sign and submit A02-AID.txt now or as soon as possible.

Question 1 [6 marks]

Let A[0..n—1] be an unsorted array that stores integers, where each entry is in the range
[0,75). Entries in A are not necessarily unique. Design an algorithm to test whether there
are indices ¢ and j such that |A[i] — A[j]| = 10. The worst-case run-time and the auxiliary
space must be in O(n).

Remark: You are not allowed to use hashing for this question. We have not even covered
hashing yet, but even if we had, its worst-case run-time is not fast enough.

Question 2 [54+3=8 marks]

a) Assume that you are given a non-empty list L that contains n key-value pairs in sorted
order, where n + 1 is a Fibonacci-number. Design an algorithm to build an AVL-tree
that contains the key-value pairs from L and has the maximum possible height. (In
other words: build a Fibonacci-tree containing the items of L.) The run-time and the
auxiliary space must be O(n).

b) Prof. Quirky thinks that he can do the above with a comparison-based algorithm even
if list L is in unsorted order. Show that this is not possible.

http://www.student.cs.uwaterloo.ca/~cs240e/w22/guidelines/guidelines.pdf
http://www.student.cs.uwaterloo.ca/~cs240e/w22/guidelines/guidelines.pdf

Question 3 [4+1+6+6(4+5)=17(+5) marks]

Consider the following realization (called buckets of sorted arrays) of ADT Dictionary. We
have an array B[0... N—1] for some N > 0. Entry B[j] is either NIL, or it stores an array
of size exactly 27, with items in sorted order. The following is an example.

a)

b)

n B

o e

Y I e EE 1
[6] 2| NIL
3| e—1——{10|17[24[31[42{49]55]56]
4| NIL

5| NIL

Design an algorithm that does search(k) in buckets of sorted arrays in O(log®n) time.
You may assume that you know n and N, but N could be arbitrarily large relative
to n. You need not argue correctness, but explain your idea well. Recall: For this
assignment you can not compute log() in constant time.

Insert key 40 into the example and show the resulting B. There are multiple possible
answers; show the one that moves as few items as possible into a different bucket.

Design an algorithm to do insert(k,v) in such a way that as few items as possible are
moved. Your algorithm must have worst-case run-time O(1+ s), where s is the number
of items that were moved. You need not argue correctness. You may assume that N
is sufficiently big so that the new item will fit.

Define & := Zé\fzo > vepy(N — j). Briefly verify that this is a potential function, and
then show that with this potential function (and a suitable choice of time units), the
amortized time of insert is O(logn). For this part you may assume that N € O(logn).

(Bonus) Design a version of insert(k,v) that does not assume that N is sufficiently
big (i.e., if needed, it increases the capacity of B and copies over if needed). Argue that
the amortized run-time for insert is still O(logn). Clearly state what your potential
function is (finding it is part of the problem), and by how much you increase the
capacity of B when copying over.

While a correct answer to e) likely contains correct answers to ¢) and d), for ease of
grading please write separate answers to ¢) and d) and refer to them in here as needed.

Question 4 [4+4245434+4=18 marks]

Motivation: Scapegoat trees as defined in class store at each node v the size of the subtree
rooted at v. This is not actually required; this assignment will guide you towards a variation

that

operates without storing the size of the subtree.

Define a light scapegoat tree to be a binary search tree T' that is height-balanced, i.e.,

You
and

height(T) < [logy/sn].

may assume that a light scapegoat tree knows its size n. It does not store its height,
its nodes know neither the size nor the height of their subtrees. You may assume that

nodes have parent-references (the parent of the root is NIL).
Consider the following (incomplete) code to insert in such a tree:

Algorithm 1: LightScapegoat Tree::insert(k,v)

// Current tree is height-balanced
1 2 < BST::insert(k,v)
2 if notHeightBalanced(z) then

3
4

p < lowestSmallAncestor(z)
completely rebuild the subtree at p as a perfectly balanced subtree

a)

b)

Design algorithm notHeightBalanced(z). This must achieve the following: you are given
a newly inserted node z that is a leaf, and you must determine whether the current
binary search tree is still height-balanced. The run-time must be O(logn). Recall: For
this assignment you can not compute log() in constant time.

Show that if the tree is not height-balanced after BST::insert, then there exists an

ancestor p of z such that

size(p) < (%)d(p’z).

Here size(p) denotes the number of items in the subtree rooted at p. (We write this as
a function, rather than as a field, to emphasize that this is not stored with the tree.)
For any ancestor v of z, d(z,v) denotes the distance from z to v, i.e., the number of
levels that v is above z. (So d(z,z) = 0, d(parent(z), z) = 1, etc.).

Design algorithm lowestSmallAncestor(z). This must achieve the following: You are
given the newly inserted node z, and you know that the tree is now not height-balanced.
You must find a node p such that size(p) < (%)d(p’z). Furthermore, your p must be the
lowest ancestor of z that satisfies this, i.e., must minimize d(p, z). The run-time must

be O(size(p) + logn).

Hint: Recall that you do not have the sizes of subtrees stored at each node. But in
time O(size(p)), you can compute the size of p. How can you organize this so that over
all ancestors of z (until you have found the right one) you only spend time O(size(p))?

3

d) Let p be the node returned by lowestSmallAncestor. Show that after rebuilding the
subtree at p to be perfectly balanced, the resulting binary search tree is height-balanced.

e) Let p be the node returned by lowestSmallAncestor. Show that before rebuilding the
subtree at p we had

|size(p.left) — size(p.right)| € Q(size(p)).

For all parts, you may use results of previous parts even if you did not prove them.

Continuing the “motivation”: We are not asking you do show that LightScapegoatTree::insert
has O(logn) amortized time, but it would be very easy to do so using the potential function
from class and taking into account part (e) as well as the run-times that you have achieved.

	Academic Integrity Declaration
	[6 marks]
	[5+3=8 marks]
	[4+1+6+6(+5)=17(+5) marks]
	[4+2+5+3+4=18 marks]

