University of Waterloo
 CS240E, Winter 2022
 Assignment 4

Due Date: Wednesday, March 16, 2022 at 5pm
Be sure to read the assignment guidelines (http://www.student.cs.uwaterloo.ca/ \sim cs240e/w22/guidelines/guidelines.pdf). Submit your solutions electronically as individual PDF files named a4q1.pdf, a4q2.pdf, ... (one per question).

Question 0 Academic Integrity Declaration

Read, sign and submit A04-AID.txt now or as soon as possible.

Question 1 [3 marks]

Let X_{i} be the length of the bucket $T[i]$ in hashing with chaining. This is a random variable (we assume that the hash-function was chosen randomly and uniformly among all possible hash-functions). What is the variance of X_{i} ? Give an exact bound (no asymptotic notation) that depends on n and M. Justify your answer.

Question $2 \quad[1+2+2+5=10$ marks $]$

Assume we have a hash function h for some table-size $M \geq 2$, and define a probe sequence as follows:

$$
\begin{aligned}
h(k, 0) & =h(k) \\
h(k, i) & =h(k, i-1)+i \bmod M \quad \text { for } 1 \leq i<M
\end{aligned}
$$

a) Write the probe sequence for $h(k)=0$ and $M=8$ starting from $i=0$ to $i=M-1$.
b) Show that this probe sequence is an instance of quadratic probing.
c) Show that if $h(k, i)=h(k, j)$ for some $0 \leq i<j<M$, then $(j-i)(j+i+1)=0 \bmod 2 M$.
d) Assume that M is a power of 2 , say $M=2^{m}$ for some integer m. Prove that all entries in the probe sequence are different, therefore the probe sequence will hit an empty slot.

Question $3 \quad[2+4+5+2=13$ marks $]$

We have seen one method of obtaining a universal family of hash-functions in class. This assignment discusses another one. Let us assume that all keys come from some universe $\{0, \ldots, U-1\}$, where $U=2^{u}$. Therefore any key k can be viewed as bitstring x_{k} of length u by taking its base- 2 representation.

Let us assume further that the hash-table-size M is $M=2^{m}$ for some integer m, with $m<u$. To choose a hash-function, we now randomly choose each entry in a $m \times u$-matrix H to be 0 or 1 (equally likely). Then compute $h_{k}=\left(H x_{k}\right) \% 2$, where x_{k} is now viewed as a vector and ' $\% 2$ ' is applied to each entry. The output is a m-dimensional vector with entries in $\{0,1\}$; interpreting it as a length- m bitstring gives a number $\{0, \ldots, M-1\}$ that we use as hash-value $h(k)$. For example, if $k=18, u=5, m=3$ and H is as shown below, then $h(k)=1$ since

$$
\underbrace{\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)}_{H} \underbrace{\left(\begin{array}{c}
1 \\
0 \\
0 \\
1 \\
0
\end{array}\right)}_{18 \text { as length-5 bitstring }} \% 2=\underbrace{\left(\begin{array}{c}
0 \\
2 \\
1
\end{array}\right)}_{H x_{k}} \% 2=\underbrace{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)}_{1 \text { as length-3 bitstring }}
$$

a) Let H be the above matrix, $u=5$ and $m=3$. Consider the keys 9 and 13 . What are their hash-values? Show your work.
b) Consider again $u=5, m=3$ and keys $k=9$ and $k^{\prime}=13$. Consider the same matrix H, except that the bits in the third column are randomly chosen. What is the probability that $h(k)=h\left(k^{\prime}\right)$? Justify your answer.
c) Show that (for any u, m) this method of choosing the hash function gives a universal hash function family, or in other words, $P\left(h(k)=h\left(k^{\prime}\right)\right) \leq \frac{1}{M}$ for any two keys $k \neq k^{\prime}$.
d) This method for obtaining universal hash-functions is much less popular than using the Carter-Wegman functions. Why do you think that that might be the case? (Expected length of answer is 1-3 sentences.)

Question $4 \quad[4+3+2+3=12$ marks $]$

Let P be a set of n points in general position. A 2-dimensional partial match query species a value a, and asks whether there are any points in P that have either x-coordinate a or y-coordinate a (or both).
a) Assume P is stored in a 2-dimensional kd-tree. Design an algorithm that can answer a partial match query in $O(\sqrt{n})$ time.
b) Argue that any comparison-based algorithm to do partial matches must use $\Omega(\log n)$ comparisons on some instance of size n.
c) Assume P is stored in a 2-dimensional range-tree. Design an algorithm to answer a partial match query. Make it as efficient as you can. It suffices to describe the idea and analyze the run-time.
d) Design a data structure to store P that uses $O(n)$ space and permits to insert points, delete points, and answer 2-dimensional partial match queries in $O(\log n)$ worst-case time. Briefly say how these operations are implemented.

Question $5 \quad[5+5+2=12$ marks $]$

A range-counting-query is like a range search, except that you only need to report how many items fall into the range, you do not need to list which items they are.
a) Describe how any balanced binary search tree can be modified such that a range counting query can be performed in $O(\log n)$ time (independent of s, the number of points in the query-interval). Briefly state the changes needed, then describe the algorithm for the range counting query.
b) Now consider the 2-dimensional-case: Describe an appropriate range-tree based data structure such that you can answer range-counting-queries among 2-dimensional points in time $O\left((\log n)^{2}\right)$. Then describe the algorithm for the range counting query.
c) Assume now that the range-counting query is 3 -sided. Which data structure for storing points would you use if your objective is a small run-time? Briefly (in 2-3 sentences) justify your answer.

Question 6 Bonus [(+5) marks]

Assume you are given an array P of n points, where points are in general position and sorted by x-coordinates. Describe an algorithm that builds a priority search tree to store points P, and that has $O(n)$ worst-case time.

Clarification: The textbook suggests to use the median x-coordinate as split-line coordinate, but you are allowed to use any values for the split-line coordinates as long as the resulting priority search tree has height at most $\lceil\log n\rceil$.

