University of Waterloo
 CS240E, Winter 2022

 Assignment 5

 Assignment 5}

Due Date: Wednesday, March 30, 2022 at 5pm
Be sure to read the assignment guidelines (http://www.student.cs.uwaterloo.ca/ ~cs240e/w22/guidelines/guidelines.pdf). Submit your solutions electronically as individual PDF files named a5q1.pdf, a5q2.pdf, ... (one per question).

Question 0 Academic Integrity Declaration

Read, sign and submit A05-AID.txt now or as soon as possible.

Question $1 \quad[3+2+3+3=11$ marks $]$

Recall that we had two versions of the KMP failure function: For $j<m-1$

- $F[j]$ is the length of the longest prefix of P that is a suffix of $P[1 . . j]$, and
- $F^{+}[j]$ is the length ℓ of the longest prefix of P that is a suffix of $P[1 . . j]$ and where additionally $P[\ell] \neq P[j+1]$, or 0 if no such ℓ exists.

This assignment asks you to explore the difference that using F^{+}can make.
a) Show the Knuth-Morris-Pratt automaton for the pattern $P=a a a b a a c$ for $\Sigma=\{a, b, c\}$, once when using F for the failure-arcs and once when using F^{+}.
b) Consider the pattern $P=a^{m}$ for some integer m. For $1 \leq j \leq m-2$, where does the failure-arc from state j lead to if we use F and F^{+}, respectively? Briefly justify your answer.
c) Show that using F^{+}can cut the number of checks in half. (Recall that a check is testing whether $P[j]=T[i]$ for some j, i, as done in line 5 of KMP::patternMatching).
To do so, design (for all sufficiently large n) a text T of length n and a pattern P that does not exist in T, but detecting this with KMP takes almost twice as many checks with F than it does with F^{+}. (You can choose the length of P; it suffices to give one P for each n.) Justify your choice by arguing how many checks are taken with each failure-function.
["Almost twice as many" means that as n goes to infinity, the ratio between the number of checks should go to 2 .
d) Show that for any text T and any pattern P not in T, using F will require at most twice as many checks as using F^{+}.

Question $2 \quad[3+3+3=9$ marks]

We are searching for pattern P in text T where $|T|=n,|P|=m$, and $n \geq m \geq 1$.
a) Show that any pattern matching algorithm must do at least $\lfloor n / m\rfloor$ checks must look at at least $\lfloor n / m\rfloor$ characters of T in the worst case.
b) Consider pattern $P=0^{m}$ and let text T be a string of $n \geq m$ bits that were randomly chosen to be 0 or 1 with equal probability. Let X be the number of checks done by Boyer-Moore until it mismatches for the first time or returns with success. (The check that leads to a mismatch is included in this count.) Show that $E[X] \leq 2$.
c) Consider the same setup as in the previous part. Assume you just had a mismatch. Show that the expected amount by which you shift the guess forward is at least $m-1$.

Motivation: For the special string $P=0^{m}$, the expected number of checks is hence $\approx 2 \frac{n}{m-1}$ (i.e., roughly within a factor 2 of the lower bound) because you expect to do 2 checks until a mismatch and then shift forward by $m-1$ characters.

Question 3 [3 marks]

Let T be a text of length n. Recall that the suffix tree of T has $O(n)$ nodes and height $O(n)$. Also, the trie of suffixes of T has $O\left(n^{2}\right)$ nodes and height $O(n)$.

Show that these bounds are tight, even if the alphabet is small. To do so, design (for all sufficiently large n) a bitstring T of length n such that its trie of suffixes has $\Omega\left(n^{2}\right)$ nodes and its suffix tree has height $\Omega(n)$. Justify your answer by explaining the structure of both tries. You may assume that n is divisible as needed.

Question $4 \quad[2+4+7=13$ marks $]$

a) Consider the text $S=$ ARECEDEDDEER. Show a Huffman-trie for this text (using $\Sigma_{S}=$ $\{A, C, D, E, R\}$). Also indicate with every node (including interior nodes) the frequency that this node had when building the Huffman-trie.
b) Assume we have characters x_{1}, \ldots, x_{n} where x_{i} has frequency $F(i)$. Here $F(i)$ is the Fibonacci-sequence: $F(1)=1, F(2)=1, F(i)=F(i-1)+F(i-2)$ for $i \geq 3$. Argue that any Huffman tree of these characters has height $n-1$.
Hint: For $i \geq 2$, what is the frequency associated with the parent p_{i} of x_{i} ?
c) Assume we have characters x_{1}, \ldots, x_{n} where x_{i} has frequency f_{i} and $\min _{i}\left\{f_{i}\right\}=1$. Assume further that some Huffman-tree T for these characters has height $n-1$. Argue that $\max _{i}\left\{f_{i}\right\} \geq F(n-1)$, where $F(\cdot)$ is again the Fibonacci-sequence.
Hint: Use the structure of a binary tree of height $n-1$ to enumerate your characters suitably, and then argue a lower bound on f_{i} and on the frequency associated with the parent p_{i} of x_{i}.

Question $5 \quad[2+2(+5)=4(+5)$ marks]

Sometimes, Huffman-encoding is described in terms of the probability p_{i} (of a character $x_{i} \in \Sigma$), which is defined as the frequency of x_{i} divided by the length of the source text.
a) (Warm-up.) Consider the text $A C A G A T A T A C A C A A C G$ over alphabet $\Sigma=$ $\{A, C, G, T\}$.
What is the cost of the corresponding Huffman-encoding? Show how you obtained your answer, and also write the length of the code-word for each character.
b) Given some probabilities p_{1}, \ldots, p_{s} (with $0<p_{i}<1$ and $\sum_{i=1}^{s} p_{i}=1$), the entropy is defined to be

$$
H\left(p_{1}, \ldots, p_{s}\right)=-\sum_{i=1}^{s} p_{i} \log _{2}\left(p_{i}\right)
$$

For a text S, we define the entropy $H(S)$ to be $|S| \cdot H\left(p_{1}, \ldots, p_{s}\right)$, where p_{1}, \ldots, p_{s} are the probabilities of the characters that occur in S.

Compute $H(S)$ for the text from part (a). Show how you obtained the answer (in particular, list the probabilities).
c) (Bonus) Let S be a text such that the length of S and the frequency of all characters in S are powers of 2 . (Say $|S|=2^{\ell_{0}}$, and the characters in S are x_{1}, \ldots, x_{k} where x_{i} has frequency $f_{i}=2^{\ell_{i}}$ for some integer $\ell_{i} \geq 0$.)

Show that the Huffman-encoding of S has cost $H(S)$. (Hint: What is the length of the codeword of x_{i} ? Part-marks for this.)

Motivation: The character-probabilities are used to develop a lower bound on any encoding into a bit-string (regardless whether it comes from a prefix-free binary encoding or elsewhere). Namely, based on Shannon's information-theoretic lower bound, one can argue that any such encoding has length at least $H(S)$. So in the special case where the frequencies are powers of 2 , Huffman-encoding gives the minimum-length encoding that is possible.

Question $6 \quad[2+2+3+3=10$ marks $]$

Recall the Elias-Gamma codes from class; we use $E_{\gamma}(N)$ to denote it for integer $N \geq 1$.
a) Show the trie that stores $E_{\gamma}(N)$ for $N \in\{1, \ldots, 7\}$.
b) Elias-Gamma codes begin with long runs of 0 . For this reason, an idea to obtain shorter codes is to encode these runs recursively. Specifically the recursive Elias-Gamma code $E_{r}(N)$ is computed with Algorithm 1 given below.
Show $E_{r}(N)$ and $E_{\gamma}(N)$ for $N=2,4,8,16$. No explanation needed.
c) You should notice that $\left|E_{r}(N)\right| \geq\left|E_{\gamma}(N)\right|$ for $i=1, \ldots, 16$. What is the smallest value of N such that $\left|E_{r}(N)\right|<\left|E_{\gamma}(N)\right|$? Justify your answer.

```
Algorithm 1: recursiveEliasGamma::encodeOneNumber( \(N\) )
    // pre: \(N \geq 1\)
    \(c \leftarrow\) empty word
    while \(N>1\) do
        \(w \leftarrow\) binary representation of \(N\)
        c.prepend \((w)\)
        \(N \leftarrow|w|-1\)
    c.prepend \((0)\)
    return(c)
```

d) Consider the following bitstring:

$$
C=0111010100110101010011010101
$$

which has the form $C=E_{r}\left(N_{1}\right)+E_{r}\left(N_{2}\right)+\ldots+E_{r}\left(N_{k}\right)$ for some integer $k \geq 1$ and integers $N_{1}, \ldots, N_{k} \geq 1$. What is N_{1} ? Explain how you obtained the answer by describing the idea for an algorithm that would convert any concatenation of recursive Elias-Gamma codes into the corresponding list of integers. Also show how this algorithm worked to obtain N_{1}. (You do not have to give the details of the algorithm, or analyze its correctness or run-time.)

