
CS 240 – Data Structures and Data Management

Module 4: Dictionaries - Enriched

T. Biedl E. Kondratovsky M. Petrick O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2022

version 2022-01-27 09:38

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022 1 / 15

Outline

1 More Balanced Search Trees
Balanced binary search trees
Scapegoat Trees
Amortized analysis
Analysis of scapegoat trees

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022

Outline

1 More Balanced Search Trees
Balanced binary search trees
Scapegoat Trees
Amortized analysis
Analysis of scapegoat trees

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022

Overview of balanced binary search trees

We will see numerous variants of binary search trees.
The operations then have the following run-times:

Θ(log n) worst-case time (AVL-trees)
Θ(log n) amortized time (Scapegoat trees)
and no rotations.
Θ(log n) expected time (Treaps)
Θ(log n) expected time (Skip lists)
and space is smaller. (It’s not even a tree.)
Θ(log n) amortized time (Splay trees)
and space is smaller, and can handle biased requests.

(We will see “rotations”, “amortized” and “biased requests” later.)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022 2 / 15

Overview of balanced binary search trees

General strategy for balanced binary search tree:
Use a binary search tree, but impose structural condition
Argue that structural condition implies O(log n) ... height
(where ... might be worst-case / avg-case / expected)
With this, search takes O(log n) ... time
Explain how to do insert and delete so that structural condition
continues to hold.

I This must be done so that run-time stays O(height)
I With this, insert/delete takes O(log n) ... time

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022 3 / 15

Outline

1 More Balanced Search Trees
Balanced binary search trees
Scapegoat Trees
Amortized analysis
Analysis of scapegoat trees

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022

Scapegoat trees

Can we have balanced binary search trees without rotations?
(A later application will need such a tree.)
This sounds impossible—we must sometimes restructure the tree.
Idea: Rather than doing a small local change, occasionally do a large
(near-global) rebuilt.

With the right setup, this will lead to O(log n) height and O(log n)
amortized time for all operations.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022 4 / 15

Scapegoat trees
Fix a constant α with 1

2 < α < 1. A scapegoat tree is a binary search
tree where any node v with a parent satisfies

v .size ≤ α · v .parent.size.

40
7

30
3

20
2

10
1

50
3

80
2

60
1

(
Lower number = subtree-size.
In our examples, α = 2

3 .

)

v .size needed during updates must be stored
Any subtree is a constant fraction smaller height O(log n).

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022 5 / 15

Scapegoat tree operations

search: As for a binary search tree. O(height) = O(log n).
For insert and delete, occasionally restructure a subtree into a
perfectly balanced tree:

|size(z .left)− size(z .right)| ≤ 1 for all nodes z .

Do this at the highest node where the size-condition of scapegoat
trees is violated

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022 6 / 15

Scapegoat Tree Insertion Example

Example:

20
4

10
1

70
2

30
1

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022 7 / 15

Scapegoat tree insertion

scapegoatTree::insert(k, v)
1. z ← BST::insert(k, v)
2. S ← stack initialized with z
3. while (p ← z .parent 6= NIL) // update sizes, get path
4. increase p.size
5. S.push(p)
6. z ← p
7. while (S.size ≥ 2) // size-condition violated?
8. p ← P.pop()
9. if (p.size < α ·max{p.left.size, p.right.size})
10. rebuild subtree at p into perfectly balanced tree
11. return

Rebuilding at p (line 10) can be done in O(p.size) time (exercise).
This restores scapegoat tree (we rebuild at the highest violation).

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022 8 / 15

Outline

1 More Balanced Search Trees
Balanced binary search trees
Scapegoat Trees
Amortized analysis
Analysis of scapegoat trees

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022

Detour: Amortized analysis

As for dynamic arrays and lazy deletion, we have the following pattern:
usually the operation is fast,
the occasional operation is quite slow.

The worst-case run-time bound here would not reflect that overall this
works quite well.

Instead, try to find an amortized run-time bound: A bound that holds if
we add the bounds up over all operations.

k∑
i=1

T actual(Oi) ≤
k∑

i=1
T amort(Oi).

(where O1, . . . ,Ok is any feasible sequence of operations, T actual(·) is the actual
run-time, and T amort(·) is the amortized run-time (or an upper bound for it).

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022 9 / 15

Detour: Amortized analysis
For dynamic arrays, some ad-hoc methods work.

40 20
insert

40 20 90
insert

40 20 90 60
rebuild

40 20 90 60

Direct argument:
I n/2 fast inserts takes Θ(1) time each.
I Then one slow insert takes Θ(n).
I Averaging out therefore Θ(1) per operation.
I This is doing math with asymptotic notation - dangerous.

Explicitly define T amort(·) and verify.
I Set time units such that T actual(insert) ≤ 1 and T actual(resize) ≤ n.
I Define T amort(insert) = 3 and T amort(resize) = 0.

Verify
∑k

i=1 T actual(Oi) ≤
≤
∑k

i=1 T amort(Oi).

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022 10 / 15

Potential function method

Usually we need more systematic methods.
Potential function: A function Φ(·) that depends on the current
status of the data structure.

I E.g.: Φ(i) = max{0, 2 · size− capacity} for dynamic arrays.
I “i” = operations O1, . . . ,Oi have been executed.

Potential function must satisfy: Φ(0) = 0, Φ(i) ≥ 0 for all i .
I Can verify this for dynamic-array function above.

Define T amort(Oi) = T actual(Oi) + Φ(i)− Φ(i − 1)

I Often we just write T amort(O) = T actual(O) + Φafter − Φbefore

Lemma: This satisfies
∑

i T actual(Oi) ≤
∑

i T amort(Oi).

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022 11 / 15

Example: Dynamic arrays
40 20

insert
40 20 90

insert
40 20 90 60

rebuild
40 20 90 60

Potential function Φ(i) = max{0, 2 · size− capacity}
As before set time units such that

T actual(insert) ≤ 1 and T actual(resize) ≤ n.

insert increases size, does not change capacity
⇒ ∆Φ = Φafter − Φbefore ≤ 2− 0 = 2

T amort(insert) ≤ 1 + 2− 0 = 3 ∈ O(1)

rebuild happens only if size = capacity = n
⇒ Φbefore = 2n − n = n.
⇒ Φafter = 2n − 2n = 0 since new capacity is 2n.

T amort(insert) ≤ n + 0− n = 0 ∈ O(1)

Result: The amortized run-time of dynamic arrays is O(1).
Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022 12 / 15

Potential function method

How to find a suitable potential function?
(No recipe, but some guidelines.)

Study the expensive operation: What gets smaller?
40 20 90 60

rebuild
40 20 90 60

I Dynamic arrays: rebuild increases capacity.
We want the potential function to get smaller.
So potential function should have term “−capacity.

Study condition Φ(·) ≥ 0 and Φ(0) = 0.
I Dynamic arrays: Usually have capacity ≤ 2 · size.

So usually 2 · size− capactiy ≥ 0,
I We added a max{0, . . . } term so that also Φ(0) = 0.

Compute the amortized time and see whether you get good bounds.
Rinse, lather, repeat.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022 13 / 15

Outline

1 More Balanced Search Trees
Balanced binary search trees
Scapegoat Trees
Amortized analysis
Analysis of scapegoat trees

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022

Amortized analysis of scapegoat trees

Expensive operation: Rebuild subtree at p.

n′
`

n′
r

p

n`

nr

p

Claim: If we rebuild at p, then |nr − n`| ≥ (2α− 1)np.
Proof:

Idea: Potential function should involve
∑

v |v .left.size− v .right.size|.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022 14 / 15

Amortized analysis of scapegoat trees

Use Φ(i) = c ·
∑

v max{|v .left− v .right| − 1, 0} for some constant c.

insert and delete increases contribution at ancestors by at most 1
and does not increase other contributions.

T amort(insert) = T actual (insert) + Φafter − Φbefore

≤ log n + c#{ancestors} ∈ O(log n)

rebuild decreases contribution at p by (2α− 1)np
and does not increase other contributions.

T amort(rebuild) = T actual (rebuild) + Φafter − Φbefore

≤ np + c(−(2α− 1)np)

With c = 1/(2α− 1), this is at most 0 and rebuild is free.
Result: All operations have amortized run-time in O(log n).

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 4 Winter 2022 15 / 15

	More Balanced Search Trees
	Balanced binary search trees
	Overview of balanced binary search trees
	Overview of balanced binary search trees

	Scapegoat Trees
	Scapegoat trees
	Scapegoat trees
	Scapegoat tree operations
	Scapegoat Tree Insertion Example
	Scapegoat tree insertion

	Amortized analysis
	Detour: Amortized analysis
	Detour: Amortized analysis
	Potential function method
	Example: Dynamic arrays
	Potential function method

	Analysis of scapegoat trees
	Amortized analysis of scapegoat trees
	Amortized analysis of scapegoat trees

