CS 240 – Data Structures and Data Management

Module 10: Compression

T. Biedl E. Kondratovsky M. Petrick O. Veksler Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2022

version 2022-03-17 10:25

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 10 Winter 2022 1 / 45

Outline

1 [Compression](#page-2-0)

- **[Encoding Basics](#page-2-0)**
- [Huffman Codes](#page-19-0)
- o [Run-Length Encoding](#page-30-0)
- [Lempel-Ziv-Welch](#page-0-0)
- [bzip2](#page-0-0)
- [Burrows-Wheeler Transform](#page-0-0)

Outline

1 [Compression](#page-2-0)

• [Encoding Basics](#page-2-0)

- [Huffman Codes](#page-19-0)
- [Run-Length Encoding](#page-30-0)
- [Lempel-Ziv-Welch](#page-0-0)
- o [bzip2](#page-0-0)
- [Burrows-Wheeler Transform](#page-0-0)

Data Storage and Transmission

The problem: How to store and transmit data?

- **Source text** The original data, string S of characters from the **source alphabet** $Σ_S$
- **Coded text** The encoded data, string C of characters from the **coded alphabet** $Σ_C$
	- **Encoding** An algorithm mapping source texts to coded texts
	- **Decoding** An algorithm mapping coded texts back to their original source text
- **Note**: Source "text" can be any sort of data (not always text!) Usually the coded alphabet $\Sigma_{\mathcal{C}}$ is just binary: $\{0, 1\}$.

Detour: streams

Usually S and C are stored as streams.

- Input-stream: Read one character at a time (via top/pop) \bullet Also supports is Empty. Sometimes need reset.
- Output-stream: Write one character at a time (via append)
- Convenient for handling huge texts (start processing while loading)

Judging Encoding Schemes

We can always measure efficiency of encoding/decoding algorithms.

What other goals might there be?

- Processing speed
- Reliability (e.g. error-correcting codes)
- Security (e.g. encryption)
- Size (main objective here)

Encoding schemes that try to minimize the size of the coded text perform **data compression**. We will measure the **compression ratio**:

$$
\frac{|C| \cdot \lceil \log |\Sigma_C| \rceil}{|S| \cdot \lceil \log |\Sigma_S| \rceil}
$$

Types of Data Compression

Logical vs. Physical

- **Logical Compression** uses the meaning of the data and only applies to a certain domain (e.g. sound recordings)
- **Physical Compression** only knows the physical bits in the data, not the meaning behind them

Lossy vs. Lossless

- **Lossy Compression** achieves better compression ratios, but the decoding is approximate; the exact source text S is not recoverable
- **Lossless Compression** always decodes S exactly

For media files, lossy, logical compression is useful (e.g. JPEG, MPEG)

We will concentrate on *physical, lossless* compression algorithms. These techniques can safely be used for any application.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) [CS240 – Module 10](#page-0-1) Winter 2022 5 / 45

Character Encodings

A **character encoding** (or more precisely **character-by-character encoding**) maps each character in the source alphabet to a string in coded alphabet.

$$
\textit{E}:\Sigma_{\textit{S}}\rightarrow\Sigma_{\textit{C}}^*
$$

For $c \in \Sigma_S$, we call $E(c)$ the **codeword** of c

Two possibilities:

- **Fixed-length code**: All codewords have the same length.
- **Variable-length code**: Codewords may have different lengths.

Fixed-length codes

ASCII (American Standard Code for Information Interchange), 1963:

7 bits to encode 128 possible characters: "control codes", spaces, letters, digits, punctuation

 $A \cdot P \cdot P \cdot L \cdot E \rightarrow (65, 80, 80, 76, 69) \rightarrow 1000001 1010000 1010000 1001100 1000101$

- Standard in all computers and often our source alphabet.
- Not well-suited for non-English text: ISO-8859 extends to 8 bits, handles most Western languages

Other (earlier) examples: Caesar shift, Baudot code, Murray code

To decode a fixed-length code (say codewords have k bits), we look up each k-bit pattern in a table.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) [CS240 – Module 10](#page-0-1) Winter 2022 7 / 45

Variable-Length Codes

Overall goal: Find an encoding that is short.

Observation: Some letters in Σ occur more often than others. So let's use shorter codes for more frequent characters.

For example, the frequency of letters in typical English text is:

Variable-Length Codes

Example 1: Morse code.

Example 2: UTF-8 encoding of Unicode:

Encodes any Unicode character (more than 107,000 characters) using 1-4 bytes

Encoding

Assume we have some character encoding $E: \Sigma_S \rightarrow \Sigma_C^*.$

- Note that E is a dictionary with keys in Σ s.
- **E.g. could store E as array indexed by** Σ **s.**

```
charByChar::encoding(E, S, C)E : the encoding dictionary
S: input-stream with characters in \Sigma_S, C: output-stream
 1. while S is non-empty
 2. x \leftarrow E.search(S.pop()3. C.append(x)
```
Example: encode text "WATT" with Morse code:

Decoding

The decoding algorithm must map Σ_C^* to Σ_S^* .

- The code must be *uniquely decodable*.
	- \triangleright This is false for Morse code as described!

 $\blacksquare \blacksquare \bullet \blacksquare \blacksquare \blacksquare$ decodes to WATT and ANO and WJ. (Morse code uses 'end of character' pause to avoid ambiguity.)

- From now on only consider **prefix-free** codes E: no codeword is a prefix of another
- **This corresponds to a** trie with characters of Σ _S only at the leaves.

 \bullet The codewords need no end-of-string symbol \$ if E is prefix-free.

Decoding of Prefix-Free Codes

Any prefix-free code is uniquely decodable (why?)

```
prefixFree::decoding(T, C, S)T : trie of a prefix-free code
C: input-stream with characters in \Sigma_c, S: output-stream
      while C is non-empty
 2. r \leftarrow T.root
 3. while r is not a leaf
4. if C is empty or r has no child labelled C.top()<br>5. return "invalid encoding"<br>6. r \leftarrow child of r that is labelled with C.pop()5. return "invalid encoding"<br>6. r \leftarrow \text{child of } r \text{ that is labelled}r \leftarrow child of r that is labelled with C.pop()7. S.append(character stored at r)
```
Run-time: $O(|C|)$.

Encoding from the Trie

We can also encode directly from the trie.

```
prefixFree::encoding(T, S, C)
T : trie of a prefix-free code
S: input-stream with characters in \Sigma_S, C: output-stream
1. E \leftarrow array of nodes in T indexed by \Sigma_S2. for all leaves \ell in T<br>3. E [character at
           E[character at \ell] \leftarrow \ell4. while S is non-empty
 5. w \leftarrow \text{empty string}6. v \leftarrow E[S.pop()]7. while v is not the root
 8. w.prepend(character from v to its parent)
 9. \pi // Now w is the encoding of character from S.10. C.append(w)
```
Run-time: $O(|T| + |C|)$ This is in $O(|\Sigma_S| + |C|)$ if T has no node with 1 child.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) [CS240 – Module 10](#page-0-1) Winter 2022 13 / 45

Example: Prefix-free Encoding/Decoding

- \bullet Encode AN_{LI}ANT \rightarrow 010010000100111
- \circ Decode 111000001010111 \rightarrow TO_LEAT

Outline

1 [Compression](#page-2-0)

• [Encoding Basics](#page-2-0)

[Huffman Codes](#page-19-0)

- [Run-Length Encoding](#page-30-0)
- [Lempel-Ziv-Welch](#page-0-0)
- o [bzip2](#page-0-0)
- [Burrows-Wheeler Transform](#page-0-0)

Huffman's Algorithm: Building the best trie

For a given source text S , how to determine the "best" trie that minimizes the length of C?

- **1** Determine frequency of each character $c \in \Sigma$ in S
- 2 For each $c \in \Sigma$, create " \boxed{c} " (height-0 trie holding c).
- **3** Our tries have a *weight*: sum of frequencies of all letters in trie. Initially, these are just the character frequencies.
- ⁴ Find the two tries with the minimum weight.
- ⁵ Merge these tries with new interior node; new weight is the sum. (Corresponds to adding one bit to the encoding of each character.)
- ⁶ Repeat last two steps until there is only one trie left

What data structure should we store the tries in to make this efficient?

Example: Huffman tree construction

Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$

Character frequencies: $G: 2$, $R: 2$, $E: 4$, $N: 2$ $Y: 1$

GREENENERGY \rightarrow 000 10 01 01 11 01 11 01 10 000 001

Compression ratio: $\frac{25}{11 \cdot \lceil \log 5 \rceil} \approx 76\%$

(If the Huffman tree is full, for example, if the frequencies were equal or almost equal, the frequencies are not skewed enough to lead to good compression. In this case, compression ratio $= 1.$

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) [CS240 – Module 10](#page-0-1) Winter 2022 16 / 45

Huffman's Algorithm: Pseudocode

Huffman Coding Discussion

- \circ We require $|\Sigma_{\mathcal{S}}| \geq 2$.
- Note: constructed trie is not unique. So decoding trie must be transmitted along with the coded text.
- This may make encoding bigger than source text!
- Encoding must pass through text twice (to compute frequencies and to encode). Cannot use a stream unless it can be re-set.
- **Encoding run-time:** $O(|\Sigma_S| \log |\Sigma_S| + |C|)$
- \circ Decoding run-time: $O(|C|)$
- The constructed trie is *optimal* in the sense that coded text is shortest (among all prefix-free character-encodings with $\Sigma_C = \{0, 1\}$). See course notes for proof.
- Many variations (give tie-breaking rules, estimate frequencies, adaptively change encoding,)

Outline

1 [Compression](#page-2-0)

- **[Encoding Basics](#page-2-0)**
- [Huffman Codes](#page-19-0)

o [Run-Length Encoding](#page-30-0)

- [Lempel-Ziv-Welch](#page-0-0)
- o [bzip2](#page-0-0)
- [Burrows-Wheeler Transform](#page-0-0)

Run-Length Encoding

- Variable-length code
- Example of **multi-character encoding**: multiple source-text characters receive one code-word.
- The source alphabet and coded alphabet are both binary: {0*,* 1}.
- Decoding dictionary is uniquely defined and not explicitly stored.

 $\overline{}$

 ${\bf x}$

 \rightarrow

When to use: if S has long runs: 00000_,111_,0000

Encoding idea:

- Give the first bit of S (either 0 or 1)
- Then give a sequence of integers indicating run lengths.
- We don't have to give the bit for runs since they alternate. Example becomes: 0*,* 5*,* 3*,* 4
- **Question**: How to encode a run length k in binary?

Prefix-free Encoding for Positive Integers

Use **Elias gamma coding** to encode k:

- \circ | log k | copies of 0, followed by
- \bullet binary representation of k (always starts with 1)

RLE Encoding

```
RLE::encoding(S, C)
S: input-stream of bits, C: output-stream
1. b \leftarrow S.\text{top}(); C.append(b)
2. while S is non-empty do
3. k \leftarrow 1 // length of run
4. while (S is non-empty and S.top() = b) do
5. k++; S.pop()// compute and append Elias gamma code
6. K \leftarrow \text{empty string}7. while k > 1
8. C.append(0)
9. K.prepend(k mod 2)
10. k \leftarrow |k/2|11. K. prepend(1) \frac{1}{K} is binary encoding of k
12. C \text{.append}(K)13. b \leftarrow 1 - b
```
RLE Decoding

RLE::decoding(C*,* S) C: input-stream of bits , S: output-stream 1. $b \leftarrow C.pop()$ // bit-value for the current run 2. **while** C is non-empty 3. $\ell \leftarrow 0$ // length of base-2 number -1 4. **while** $C.pop() = 0$ do $\ell++$ 5. $k \leftarrow 1$ // base-2 number converted 6. **for** $(j \leftarrow 1 \text{ to } \ell)$ **do** $k \leftarrow k * 2 + C$ *.pop*() 7. **for** $(j \leftarrow 1 \text{ to } k)$ **do** S.append(b) 8. $b \leftarrow 1 - b$

If C*.*pop() is called when there are no bits left, then C was not valid input.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) [CS240 – Module 10](#page-0-1) Winter 2022 22 / 45

RLE Example

Encoding:

S = **11111110010000000000000000000011111111111**

Decoding:

- $C = 00001101001001010$
- $S = 000000000000001111011$

RLE Properties

- \bullet An all-0 string of length *n* would be compressed to $2|\log n| + 2 \in o(n)$ bits.
- Usually, we are not that lucky:
	- ► No compression until run-length $k \geq 6$
	- Expansion when run-length $k = 2$ or 4
- Used in some image formats (e.g. TIFF)
- Method can be adapted to larger alphabet sizes (but then the encoding of each run must also store the character)
- \bullet Method can be adapted to encode *only* runs of 0 (we will need this soon)

Outline

1 [Compression](#page-2-0)

- **[Encoding Basics](#page-2-0)**
- [Huffman Codes](#page-19-0)
- [Run-Length Encoding](#page-30-0)

[Lempel-Ziv-Welch](#page-0-0)

- o [bzip2](#page-0-0)
- [Burrows-Wheeler Transform](#page-0-0)

Longer Patterns in Input

Huffman and RLE take advantage of frequent/repeated single characters.

Observation: Certain substrings are much more frequent than others.

- English text: Most frequent digraphs: TH, ER, ON, AN, RE, HE, IN, ED, ND, HA Most frequent trigraphs: THE, AND, THA, ENT, ION, TIO, FOR, NDE
- \bullet HTML: "<a href", "<img src", "
"
- Video: repeated background between frames, shifted sub-image

Ingredient 1 for Lempel-Ziv-Welch compression: take advantage of such substrings without needing to know beforehand what they are.

Adaptive Dictionaries

ASCII, UTF-8, and RLE use fixed dictionaries.

In Huffman, the dictionary is not fixed, but it is *static*: the dictionary is the same for the entire encoding/decoding.

Ingredient 2 for LZW: adaptive encoding:

- \bullet There is a fixed initial dictionary D_0 . (Usually ASCII.)
- For $i\geq 0$, D_i is used to determine the i th output character
- After writing the ith character to output, both encoder and decoder update D_i to D_{i+1}

Encoder and decoder must both know how the dictionary changes.

LZW Overview

- \circ Start with dictionary D_0 for $|\Sigma_S|$. Usually Σ _S = ASCII, then this uses codenumbers $0, \ldots, 127$.
- Every step adds to dictionary a multi-character string, using codenumbers 128*,* 129*, . . .* .
- Encoding:
	- \triangleright Store current dictionary D_i as a trie.
	- \blacktriangleright Parse trie to find longest prefix w already in D_i . So all of w can be encoded with one number.
	- \triangleright Add to dictionary the substring that would have been useful: add wK where K is the character that follows w in S .
	- \blacktriangleright This creates one child in trie at the leaf where we stopped.
- Output is a list of numbers. This is usually converted to bit-string with fixed-width encoding using 12 bits.
	- \triangleright This limits the codenumbers to 4096.

LZW Example

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) [CS240 – Module 10](#page-0-1) Winter 2022 28 / 45

LZW encoding pseudocode

LZW decoding

- Build dictionary while reading string by imitating encoder.
- We are one step behind.

LZW decoding: the catch

- In this example: Want to decode 133, but incomplete in dictionary!
- What happened during the corresponding encoding? $\mathsf{Text}:\mathsf{[C\text{ }}||\mathsf{A}||\mathsf{[N||}]||\mathsf{u}||\mathsf{[B||]}\mathsf{A}||\mathsf{N}||\mathsf{x}_1|\mathsf{x}_2|\dots$ 67 $|~65$ $|~78$ $|~33$ $|~66$ $|~$ $~129$ $|~$ $~$ $~133$ $A \quad N \quad x_1$

Dictionary (parts omitted):

\n
$$
\begin{array}{r}\n\mathbf{A} \rightarrow \boxed{65} - N - \boxed{129} - x_1 - \boxed{133} \\
\mathbf{B} \rightarrow \boxed{66} - A - \boxed{132}\n\end{array}
$$

 \bullet We know: 133 encodes AN x_1 (for unknown x_1)

• We know: Next step uses $133 = ANx_1$

 \circ So $x_1 = A$ and 133 encodes ANA

Generally: If code number is about to be added to D , then it encodes

"previous string $+$ first character of previous string"

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) [CS240 – Module 10](#page-0-1) Winter 2022 31 / 45

LZW decoding pseudocode

LZW::decoding(C*,* S) C: input-stream of integers, S: output-stream 1. $D \leftarrow$ dictionary that maps $\{0, \ldots, 127\}$ to ASCII 2. $idx \leftarrow 128$ 3. code \leftarrow C.pop(); $s \leftarrow D(code)$; S.append(s) 4. **while** there are more codes in C **do** 5. $s_{prev} \leftarrow s$; code \leftarrow C.pop() 6. **if** code *<* idx 7. $s \leftarrow D(code)$ 8. **else if** $code = idx /|$ special situation! 9. $s \leftarrow s_{prev} + s_{prev}[0]$ 10. **else** FAIL // Encoding was invalid 11. S*.*append(s) 12. *D.* insert(idx , s_{prev} + $s[0]$) 13. $idx++$

LZW decoding example revisited

LZW decoding - second example

No need to build a trie; store dictionary as array.

			decodes		String	String
ASCII		input	to	Code $#$	(human)	(computer)
\cdots		98	b			
97	a	97	a	128	ba	98. a
98	b	114	r	129	ar	97, r
.		128	ba	130	rb	114, b
101	e	114	r	131	bar	128. r
\cdots		97	a	132	ra	114. a
110	n	131	bar	133	ab	97, b
\cdots		134	barb	134	barb	131, b
114	r	129	ar	135	barba	134. a
\cdots		101	e	136	are	129, e
		110	n	137	en	101 , n

 \bullet To save space, store string as code of prefix $+$ one character.

 \circ Can still look up s in $O(|s|)$ time.

Lempel-Ziv-Welch discussion

- \bullet Encoding: $O(|S|)$ time, uses a trie of encoded substrings to store the dictionary
- \circ Decoding: $O(|S|)$ time, uses an array indexed by code numbers to store the dictionary.
- Encoding and decoding need to go through the string only *once* and do not need to see the whole string
	- \Rightarrow can do compression while streaming the text
- Compresses quite well (\approx 45% on English text).

Brief history:

LZ77 Original version ("sliding window") Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, ... DEFLATE used in (pk)zip, gzip, PNG

LZ78 Second (slightly improved) version Derivatives: LZW, LZMW, LZAP, LZY, ... LZW used in compress, GIF (patent issues!)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) [CS240 – Module 10](#page-0-1) Winter 2022 35 / 45

Outline

1 [Compression](#page-2-0)

- [Encoding Basics](#page-2-0)
- [Huffman Codes](#page-19-0)
- [Run-Length Encoding](#page-30-0)
- [Lempel-Ziv-Welch](#page-0-0)
- [bzip2](#page-0-0)
- [Burrows-Wheeler Transform](#page-0-0)

bzip2 overview

To achieve even better compression, bzip2 uses text transform: Change input into a different text that is not necessarily shorter, but that has other desirable qualities.

text T_0 $\overline{1}$ $\overline{1}$ $\overline{1}$ \downarrow Burrows-Wheeler transform If T_0 has repeated substrings, then T_1 has long runs of characters. text \mathcal{T}_1 $\overline{1}$ $\overline{1}$ $\overline{1}$ \downarrow Move-to-front transform If T_1 has long runs of characters, then T_2 has long runs of zeros and skewed frequencies. text T_2 $\overline{}$ $\overline{1}$ $\overline{1}$ \downarrow Modified RLE If T_2 has long runs of zeroes, then T_3 is shorter. Skewed frequencies remain. text \mathcal{T}_3 $\overline{}$ $\overline{1}$ $\overline{1}$ \downarrow Huffman encoding Compresses well since frequencies are skewed. text \mathcal{T}_4

Move-to-Front transform

Recall the MTF heuristic for self-organizing search:

 \bullet Dictionary L is stored as an unsorted array or linked list

After an element is accessed, move it to the front of the dictionary How can we use this idea for transforming a text with repeat characters?

- \bullet Encode each character of source text S by its index in L.
- After each encoding, update L with Move-To-Front heuristic.
- **Example:** $S = GOOD$ becomes $C = 1, 2, 0, 2$

0 1 2 $\begin{array}{|c|c|c|c|c|}\hline 0&1&2&&0&1&2 \ \hline D&G&0&1&\hline \end{array}$ $\begin{array}{c|c|c|c|c} 0 & 1 & 2 & & 0 & 0 & 1 & 2 \\ \hline G & D & 0 & & 2 & 0 & G & D \end{array}$ $\begin{array}{|c|c|c|c|c|}\hline 0&1&2&0&0&1&2 \ \hline 0&G&D&0&\fline 0&G&D \ \hline \end{array}$ O G D D −→2 0 1 2 $D \mid 0 \mid G$

Observe: A character in S repeats k times ⇔ C has run of k−1 zeroes **Observe:** C contains lots of small numbers and few big ones. C has the same length as S , but better properties.

Move-to-Front Encoding/Decoding

MTF::encoding(S*,* C)

1. $L \leftarrow$ array with Σ_S in some pre-agreed, fixed order (usually ASCII)

2. **while** S is not empty **do**

$$
3. \hspace{1cm} c \leftarrow S.\textit{pop}()
$$

4.
$$
i \leftarrow \text{index such that } L[i] = c
$$

$$
5. \hspace{3.5cm} C.append(i)
$$

6. **for** $j = i - 1$ down to 0

7. swap
$$
L[j]
$$
 and $L[j+1]$

Decoding works in *exactly* the same way:

$MTF::decoding(C, S)$
1. $L \leftarrow$ array with Σ_S in some pre-agreed, fixed order (usually ASCII)
2. while C is not empty do
3. $i \leftarrow$ next integer from C
4. $S.append(L[i])$
5. for $j = i - 1$ down to 0
6. swap $L[j]$ and $L[j + 1]$

Outline

1 [Compression](#page-2-0)

- [Encoding Basics](#page-2-0)
- [Huffman Codes](#page-19-0)
- [Run-Length Encoding](#page-30-0)
- [Lempel-Ziv-Welch](#page-0-0)
- o [bzip2](#page-0-0)

[Burrows-Wheeler Transform](#page-0-0)

Burrows-Wheeler Transform

Idea:

- \circ Permute the source text S: the coded text C has the exact same letters (and the same length), but in a different order.
- **Goal:** If S has repeated substrings, then C should have long runs of characters.
- We need to choose the permutation carefully, so that we can *decode* correctly.

Details:

- Assume that the source text S ends with end-of-word character \$ that occurs nowhere else in S.
- A **cyclic shift** of S is the concatenation of S[i+1*..*n−1] and S[0*..*i], for $0 \leq i \leq n$.
- \bullet The encoded text C consists of the last characters of the cyclic shifts of S after sorting them.

BWT Encoding Example

- $S =$ alf $_0$ eats $_0$ alfalfa\$
	- ¹ **Write all cyclic shifts**
	- ² **Sort cyclic shifts**

 $C =$

³ **Extract last characters from sorted shifts**

```
$alf␣eats␣alfalfa
␣alfalfa$alf␣eats
␣eats␣alfalfa$alf
a$alf␣eats␣alfalf
alf␣eats␣alfalfa$
alfa$alf␣eats␣alf
alfalfa$alf␣eats␣
ats␣alfalfa$alf␣e
eats␣alfalfa$alf␣
f␣eats␣alfalfa$al
fa$alf␣eats␣alfal
falfa$alf␣eats␣al
lf␣eats␣alfalfa$a
lfa$alf␣eats␣alfa
lfalfa$alf␣eats␣a
s␣alfalfa$alf␣eat
ts␣alfalfa$alf␣ea
```
Observe: Substring alf occurs three times and causes runs lll and aaa in C (why?)

Fast Burrows-Wheeler Encoding $S = \text{alf}_\text{L}$ eats_{Li}alfalfa\$

- Need: sorting permutation of cyclic shifts.
- Observe: This is the same as the sorting permutation of the suffixes.
- \bullet That's the suffix array! Can compute this in $O(n \log n)$ time.
- Can read BWT encoding from suffix array in linear time.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) [CS240 – Module 10](#page-0-1) Winter 2022 41 / 45

BWT Decoding

Idea: Given C, we can reconstruct the first and last column of the array of cyclic shifts by sorting.

- $C = \text{ard}\$ rcaaaabb ¹ **Last column:** C ² **First column:** C **sorted** ³ **Disambiguate by row-index** Can argue: Repeated characters are in the same order in the first and the last column (the sort was stable). ⁴ **Starting from** \$**, recover** S \$,3.........a,0 a,0.........r,1 a,6.........d,2 a,7.........\$,3 a,8.........r,4 a,9.........c,5 b,10.........a,6 b,11.........a,7 c,5.........a,8 d,2.........a,9
- $S =$

r,1.........b,10 r,4.........b,11

BWT Decoding

BWT::decoding $(C[0..n-1], S)$ C : string of characters over alphabet Σ_S , S: output-stream 1. A \leftarrow array of size n // leftmost column 2. **for** $i = 0$ to $n - 1$ 3. $A[i] \leftarrow (C[i], i) \quad \textit{ // store character and index }$ 4. Stably sort A by character 5. **for** $j = 0$ to $n - 1$ // where is the \$-char? 6. if $C[j] = $$ **break** 7. **repeat** 8. S*.*append(character stored in A[j]) 9. j ← index stored in $A[j]$ 10. **until** we have appended \$

BWT Overview

Encoding cost: O(n log n)

• Read encoding from the suffix array.

In practice MSD radix sort is good enough (but worst-case $\Theta(n^2)$). Decoding cost: $O(n + |\Sigma_S|)$ (faster than encoding)

Encoding and decoding both use $O(n)$ space.

They need all of the text (no streaming possible). BWT is a **block compression method**.

BWT tends to be slower than other methods, but (combined with MTF, modified RLE and Huffman) gives better compression.

Compression summary

