
CS 240 – Data Structures and Data Management

Module 11E: External Memory - enriched

T. Biedl E. Kondratovsky M. Petrick O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2022

version 2022-03-29 14:42

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 1 / 22

Outline

11 External Memory
Red-black trees
Pre-emptive splitting/merging
B+-trees
LSM-trees
Extendible Hashing

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022

Outline

11 External Memory
Red-black trees
Pre-emptive splitting/merging
B+-trees
LSM-trees
Extendible Hashing

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022

Towards red-black-tree
(We currently only consider run-time in RAM. We will return to the EMM shortly.)

Recall: All operations in 2-4 trees have O(log n) worst-case run-time.
The height is much smaller than for AVL-trees (log2(n+1

2)
vs. logΦ(n) ≈ 1.44 log2 n.)
So they might be more efficient, depending on implementation details.

But: Handling three kinds of nodes is cumbersome.
(We either need a list for KVPs and subtrees, or waste space at nodes
to have space for links always available.)

Better idea: Design a class of binary search trees that mirrors 2-4-trees!

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 2 / 22

2-4-tree to red-black-tree

5 12

3 4
∅ ∅ ∅

11
∅ ∅

13 14 15
∅ ∅ ∅ ∅

→

12

5

4

3

∅ ∅

∅

11

∅ ∅

14

13

∅ ∅

15

∅ ∅

Converting a 2-4-tree:
A d-node becomes a black node with d−1 red children
(Assembled so that they form a BST of height at most 1.)

Resulting properties:
Any red node has a black parent.
Any empty subtree T has the same black-depth
(number of black nodes on path from root to T)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 3 / 22

Red-black-trees

12

5

4

3

∅ ∅

∅

11

∅ ∅

14

13

∅ ∅

15

∅ ∅

Definition: A red-black tree is a binary search tree such that
Every node has a color (red or black)
Every red node has a black parent.
(In particular the root is black.)
Any empty subtree T has the same black-depth.

Note: Can store this with one bit overhead per node.
Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 4 / 22

Red-black tree
Rather than proving properties directly, we re-use properties of 2-4-trees.

Lemma: Any red-black tree T can be converted into a 2-4-tree T ′ where
height(T ′) =black-depth(T)− 1.

13

8

1

∅ ∅

11

9

∅ ∅

∅

17

15

∅ ∅

25

22

∅ ∅

27

∅ ∅

→

8 13 17

1
∅ ∅

9 11
∅ ∅ ∅

15
∅ ∅

22 25 27
∅ ∅ ∅ ∅

Proof:
Black node with 0 ≤ d ≤ 2 red children becomes a (d+1)-node

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 5 / 22

Red-black tree properties
Red-black trees have height ≤ 2 log(n+1

2) + 1
I black-depth ≤ log(n+1

2) + 1 by 2-4-tree height.
I At least half of the nodes on the path to deepest nodes are black

(recall: red nodes have black parents)
⇒ height=# nodes on path - 1 ≤ 2 black-depth - 1

insert/delete can be done as for 2-4-trees.
I One can “translate” the code directly to red-black trees.
I The transfer/split/merge operations become rotations.

So all operations take Θ(log n) worst-case time.
In the worst case, Θ(log n) rotations are required for insert/delete.
But experiments show that few rotations usually suffice, and updates
are faster in red-black trees than in AVL-trees.

This is a very efficient balanced binary search tree.

(There are even better balanced binary search trees. No details.)
Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 6 / 22

Outline

11 External Memory
Red-black trees
Pre-emptive splitting/merging
B+-trees
LSM-trees
Extendible Hashing

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022

Pre-emptive splitting/merging
• 32 v • 58 v • •

• 14 v • 20 v • 26 v •

•
10
v
•
12
v
•

•

•
16
v
•
18
v
•

•

•
22
v
•
24
v
•

•

•
28
v
•
30
v
•

•

• 38 v • 44 v • 50 v •

•
34
v
•
36
v
•

•

•
40
v
•
42
v
•

•

•
46
v
•
48
v
•

•

•
52
v
•
54
v
•
56
v
•

• 64 v • 70 v • •

•
60
v
•
62
v
•

•

•
66
v
•
68
v
•

•

•
72
v
•
74
v
•

•

Observe: BTree::insert(k, v) traverses tree twice:
I Search down on a path to the leaf where we add (k, v).
I Go back up on the path to fix overflow, if needed.

So the number of block-transfers could be twice the height.
How can we avoid this?

Idea: During the search, always split if the node is full.
Then a node split at the leaf does not create an overfull parent.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 7 / 22

Pre-emptive splitting/merging example
PreemptiveBTree::insert(49):

• 32 v • 58 v • •

• 14 v • 20 v • 26 v •

•
10
v
•
12
v
•

•

•
16
v
•
18
v
•

•

•
22
v
•
24
v
•

•

•
28
v
•
30
v
•

•

• 38 v • 44 v • 50 v •

•
34
v
•
36
v
•

•

•
40
v
•
42
v
•

•

•
46
v
•
48
v
•

•

•
52
v
•
54
v
•
56
v
•

• 64 v • 70 v • •

•
60
v
•
62
v
•

•

•
66
v
•
68
v
•

•

•
72
v
•
74
v
•

•

If node is not full, keep searching.
If node is full, immediately split.
Then keep searching in appropriate new node.
We may have split unnecessarily. (But space is cheap.)

Similarly delete should pre-emptively merge. (No details.)
With this, we no longer need parent-references.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 8 / 22

Outline

11 External Memory
Red-black trees
Pre-emptive splitting/merging
B+-trees
LSM-trees
Extendible Hashing

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022

Towards B+-trees
In a B-tree, each node is one block of memory. In this example, up to 10
keys/references fit into one block, so the order is 4.

• 32 v • 58 v • •

• 14 v • 20 v • 26 v •

•
10
v
•
12
v
•

•

•
16
v
•
18
v
•

•

•
22
v
•
24
v
•

•

•
28
v
•
30
v
•

•

• 38 v • 44 v • 50 v •

•
34
v
•
36
v
•

•

•
40
v
•
42
v
•

•

•
46
v
•
48
v
•

•

•
52
v
•
54
v
•
56
v
•

• 64 v • 70 v • •

•
60
v
•
62
v
•

•

•
66
v
•
68
v
•

•

•
72
v
•
74
v
•

•

This B-tree could store up to 63 KVPs with height 2.

Two ideas to achieve smaller height:
1 The leaves are wasting space for references that will never be used.
2 Use a decision-tree version ⇒ inner nodes can have more children.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 9 / 22

B+-trees

Each node is one block of memory.
All KVPs are stored at leaves. Each leaf is at least half full.
Interior nodes store only keys for comparison during search.
Interior (non-root) nodes have at least half of the possible subtrees.
insert/delete use pre-emptive splitting/merging.

• <46? • • • •

• <16? • <24? • <32? • <40? •

10
v
12
v
14
v

16
v
18
v
20
v
22
v

24
v
26
v
28
v
30
v

32
v
34
v
36
v
38
v

40
v
42
v
44
v

• <54? • <60? • <70? • •

46
v
48
v
50
v
52
v

54
v
56
v
58
v

60
v
62
v
64
v
66
v
68
v

70
v
72
v
74
v

This B+-tree could store up to 125 KVPs with height 2.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 10 / 22

Outline

11 External Memory
Red-black trees
Pre-emptive splitting/merging
B+-trees
LSM-trees
Extendible Hashing

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022

Towards LSM-trees

• 32 v • 58 v • • • 32 v • 58 v • •
•
14v•
20v•
26v•

•
38v•
44v•
50v•

•
64v•
70v•

•

One block: B-tree:

Internal External
Main memory only requires 1-2 blocks at a time.
Roughly M − 2B space free.
How can we use this to increase speed for updates?

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 11 / 22

LSM-trees

• 32 v • 58 v • • • 32 v • 58 v • •
•
14v•
20v•
26v•

•
38v•
44v•
50v•

•
64v•
70v•

•

30
inserted

20
deleted

47
inserted

One block: C1 (B-tree):

C0 (log of the changes):

Internal External
Store dictionary in internal memory that logs all changes
To search: first search in C0, then (if needed) in C1

If internal memory full: do lots of updates in C1 at once

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 12 / 22

Outline

11 External Memory
Red-black trees
Pre-emptive splitting/merging
B+-trees
LSM-trees
Extendible Hashing

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022

Dictionaries for Integers in External Memory

Recall Hashing:(Direct Addressing allowed for O(1) insert and delete if keys are small integers.
If keys are too big, use hash-function to map them to (smaller) integers.
Expected run-time of operations is O(1) if load factor α is kept small

)

This does not adapt well to external memory.
We must occasionally re-hash to keep α small.
And re-hashing must load all n/B blocks.
This is unacceptably slow.

Goal: Data structure for integers that typically uses O(1) block transfers,
and never needs to load all blocks.

Idea: Hash-values = bitstrings. Store trie of links to blocks of integers.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 13 / 22

Trie of blocks – Overview

0

0
1

1

0

1

00101
00000

00***

01000
01010

010**

01101
01110
01111

011**

10101
11010
10000

1****

Internal External

Assumption: We store non-negative
integers (here written as bitstrings).
[Typically these are hash-values.]

Build trie D (the directory) of inte-
gers in internal memory.

Stop splitting in trie when remaining
items fit in one block.
(∼ pruned trie, but stop earlier)

Each leaf of D refers to block of ex-
ternal memory that stores the items.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 14 / 22

Trie of blocks – operations

0

0
1

1

0

1

00101
00000

00***

01000
01010

010**

01101
01110
01111

011**

10101
11010
10000

1****

Internal External

search(k): Search for k in D until we
reach leaf `. Load block at ` and
search in it.
1 block transfer.

insert(k): Search for k, load block,
then insert k. If this exceeds block-
capacity, split at trie-node and split
blocks (possibly repeatedly).
Typically 2 block transfers.

delete(k): Search for k, load block,
then delete k.
Optional: combine underfull blocks.
2 block transfers.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 15 / 22

Trie of blocks: Insert

TrieOfBlocks::insert(k, v)
(k, v): key-value pair, k is a bit-string
1. `← Trie::search(D, k) // leaf with prefix of k
2. d ← depth of ` in D
3. transfer block P that ` refers to
4. while P has no room for additional items
5. Split P into two blocks P0 and P1 by k[d]
6. Create two children `0 and `1 of `, linked to P0 and P1
7. d ← d+1, `← `k[d],P ← Pk[d]
8. insert (k, v) into P

Note: This may create empty blocks, but this should be rare.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 16 / 22

Trie of blocks: Insert
insert(10110)

0

0
1

1

0

1

00101
00000

01000
01010

01101
01110
01111

10101
10010
10000

0

0
1

1

0

0
1

0

1
1

00101
00000

01000
01010

01101
01110
01111

10010
10000

10101
10110

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 17 / 22

Extendible hashing
We can save links (hence space in internal memory) with two tricks:

Expand the trie so that all leaves have the same global depth dD.
Store only the leaves, and in an array D of size 2dD .

0
10

0
1

1

0

0
1

0

0
1

1

1

00101
00000

01000
01010

01101
01110
01111

10101
11010
10000

000
001
010
011
100
101
110
111

3Global
depth

00101
00000 2

01000
01010 3

01101
01110
01111

1

10101
11010
10000

1

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 18 / 22

Extendible hashing operations
Conceptually: convert table to trie, do operation, convert trie to table
But work directly on table if each block stores its local depth, i.e.,
the depth of the original trie-node that referred to it.

Example: insert(10110)

000
001
010
011
100
101
110
111

3Global
depth

00101
00000 2

01000
01010 3

01101
01110
01111

1

10101
11010
10000

1

000
001
010
011
100
101
110
111

3Global
depth

00101
00000 2

01000
01010 3

01101
01110
01111

3

10010
10000 3

10101
10110 3

2

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 19 / 22

Extendible hashing operations
If insert increased the trie-height, then the array-size now doubles.
Example: insert(01100) in trie of blocks

0

0
1

1

0

1

00101
00000

01000
01010

01101
01110
01111

10101
10010
10000

0

0
0
1

1
1

0

1

00101
00000

01000
01010

01101
01100

01110
01111

01101
01110
01111

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 20 / 22

insert(01100) in extendible hash-table

•000
•001
•010
•011
•100
•101
•110
•111

3Global
depth

00101
00000 2

01000
01010 3

01101
01110
01111

1

10101
11010
10000

1

•0000
•0001
•0010
•0011
•0100
•0101
•0110
•0111
•1000
•1001
•1010
•1011
•1100
•1101
•1110
•1111

4Global
depth

00101
00000 2

01000
01010 3

01101
01100 4

01110
01111 4

10101
11010
10000

1

But notice: We do not need to load extra blocks for this.
The number of block-transfers is exactly the same as with the trie of
blocks, but the space used by the dictionary is much better.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 21 / 22

Extendible hashing discussion

Hashing collisions (= duplicate keys) are resolved within the block
and do not affect the block transfers.
If more items collide than can fit into a block we
extend the hash-function, i.e., make bit-strings longer without
changing the initial bits.
Directory typically fits into in internal memory.
If it does not, then strategies similar to B-trees can be applied.
Only 1 or 2 block transfers expected for any operation.
To make more space, we only add one block.
Rarely change the size of the directory.
Never have to move all items. (in contrast to re-hashing!)
Space usage is not too inefficient: one can show that under uniform
distribution assumption each block is expected to be 69% full.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 11E Winter 2022 22 / 22

	External Memory
	Red-black trees
	Towards red-black-tree
	2-4-tree to red-black-tree
	Red-black-trees
	Red-black tree
	Red-black tree properties

	Pre-emptive splitting/merging
	Pre-emptive splitting/merging
	Pre-emptive splitting/merging example

	B+-trees
	Towards B+-trees
	B+-trees

	LSM-trees
	Towards LSM-trees
	LSM-trees

	Extendible Hashing
	Dictionaries for Integers in External Memory
	Trie of blocks – Overview
	Trie of blocks – operations
	Trie of blocks: Insert
	Trie of blocks: Insert
	Extendible hashing
	Extendible hashing operations
	Extendible hashing operations
	insert(01100) in extendible hash-table
	Extendible hashing discussion

