
CS 240 – Data Structures and Data Management

Module 6E: Dictionaries for special keys - Enriched

T. Biedl E. Kondratovsky M. Petrick O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2022

version 2022-02-08 13:47

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 1 / 12

Outline

A tighter lower bound
Improving binary search
More on interpolation search
More on pruned tries

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022

Outline

A tighter lower bound
Improving binary search
More on interpolation search
More on pruned tries

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022

A tighter lower bound

Create 2n + 1 instances:
Items: x0

“k=x0”

x1

“k=x1”

x2

“k=x2”

x3

“k=x3”

x4

“k=x4”

x5

“k=x5”

x6

“k=x6”

<x0 (x0, x1) (x1, x2) (x2, x3) (x3, x4) (x4, x5) (x5, x6) (x6, x7) (xn−2, xn−1) >xn−1

. . . xn−1

“k=xn−1”
Search:

Claim: These instances must lead to distinct leaves (assuming no
equality-comparison).

So we require at least dlog(2n + 1)e comparisons.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 2 / 12

A tighter lower bound

Create 2n + 1 instances:
Items: x0

“k=x0”

x1

“k=x1”

x2

“k=x2”

x3

“k=x3”

x4

“k=x4”

x5

“k=x5”

x6

“k=x6”

<x0 (x0, x1) (x1, x2) (x2, x3) (x3, x4) (x4, x5) (x5, x6) (x6, x7) (xn−2, xn−1) >xn−1

. . . xn−1

“k=xn−1”
Search:

Claim: These instances must lead to distinct leaves (assuming no
equality-comparison).

So we require at least dlog(2n + 1)e comparisons.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 2 / 12

A tighter lower bound

Create 2n + 1 instances:
Items: x0

“k=x0”

x1

“k=x1”

x2

“k=x2”

x3

“k=x3”

x4

“k=x4”

x5

“k=x5”

x6

“k=x6”

<x0 (x0, x1) (x1, x2) (x2, x3) (x3, x4) (x4, x5) (x5, x6) (x6, x7) (xn−2, xn−1) >xn−1

. . . xn−1

“k=xn−1”
Search:

Claim: These instances must lead to distinct leaves (assuming no
equality-comparison).

So we require at least dlog(2n + 1)e comparisons.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 2 / 12

Outline

A tighter lower bound
Improving binary search
More on interpolation search
More on pruned tries

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022

Improving binary search
binary-search uses ≈ 2 log n comparisons.
Goal: Improve it to use dlog(2n + 1)e ≈ log n + 1 comparisons.
Main ingredient: Do only one comparison per round.

binary-search-optimized(A, n, k)
A: Sorted array of size n, k: key
1. `← 0, r ← n − 1, χ← 0
2. while (` < r)

3. m← b `+r
2 c

4. if (A[m] < k) then `← m + 1
5. else r ← m, χ← 1 // this is different!
6. if (k < A[`]) then return “not found, between A[`−1] and A[`]”
7. else if χ = 1 or (k ≤ A[`]) then return “found at A[`]”
8. else “not found, between A[`] and A[`+1]”

(χ needed for optimum # of comparisons, but not normally used)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 3 / 12

Improving binary search
Claim 1: This terminates.

Right sub-array is clearly smaller.
If ` < r , then m ≤ `+r

2 < r+r
2 < r so left sub-array is smaller.

Claim 2: This returns correctly.
Loop-invariant suprisingly tricky: A[`−1]<k≤A[r+1], plus others.
(See textbook).
Claim 3: This uses at most dlog ne+ 2 comparisons.
Sub-array has size ≤ dn/2e, so dlog ne rounds.
One comparison per round. At most 2 comparisons at the end.
Claim 4: If χ is used, then # comparisons ≤ dlog(2n + 1)e.
(Straightforward but tedious cases. See textbook for details.)

This uses the optimum number of comparisons and also in practice
performs better than binary-search.

I But normally omit χ (only needed in Claim 4)
I Can replace two comparisons in lines 6-7 by equality-comparison.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 4 / 12

Improving binary search
Claim 1: This terminates.
Right sub-array is clearly smaller.
If ` < r , then m ≤ `+r

2 < r+r
2 < r so left sub-array is smaller.

Claim 2: This returns correctly.
Loop-invariant suprisingly tricky: A[`−1]<k≤A[r+1], plus others.
(See textbook).
Claim 3: This uses at most dlog ne+ 2 comparisons.
Sub-array has size ≤ dn/2e, so dlog ne rounds.
One comparison per round. At most 2 comparisons at the end.
Claim 4: If χ is used, then # comparisons ≤ dlog(2n + 1)e.
(Straightforward but tedious cases. See textbook for details.)

This uses the optimum number of comparisons and also in practice
performs better than binary-search.

I But normally omit χ (only needed in Claim 4)
I Can replace two comparisons in lines 6-7 by equality-comparison.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 4 / 12

Improving binary search
Claim 1: This terminates.
Right sub-array is clearly smaller.
If ` < r , then m ≤ `+r

2 < r+r
2 < r so left sub-array is smaller.

Claim 2: This returns correctly.

Loop-invariant suprisingly tricky: A[`−1]<k≤A[r+1], plus others.
(See textbook).
Claim 3: This uses at most dlog ne+ 2 comparisons.
Sub-array has size ≤ dn/2e, so dlog ne rounds.
One comparison per round. At most 2 comparisons at the end.
Claim 4: If χ is used, then # comparisons ≤ dlog(2n + 1)e.
(Straightforward but tedious cases. See textbook for details.)

This uses the optimum number of comparisons and also in practice
performs better than binary-search.

I But normally omit χ (only needed in Claim 4)
I Can replace two comparisons in lines 6-7 by equality-comparison.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 4 / 12

Improving binary search
Claim 1: This terminates.
Right sub-array is clearly smaller.
If ` < r , then m ≤ `+r

2 < r+r
2 < r so left sub-array is smaller.

Claim 2: This returns correctly.
Loop-invariant suprisingly tricky: A[`−1]<k≤A[r+1], plus others.
(See textbook).

Claim 3: This uses at most dlog ne+ 2 comparisons.
Sub-array has size ≤ dn/2e, so dlog ne rounds.
One comparison per round. At most 2 comparisons at the end.
Claim 4: If χ is used, then # comparisons ≤ dlog(2n + 1)e.
(Straightforward but tedious cases. See textbook for details.)

This uses the optimum number of comparisons and also in practice
performs better than binary-search.

I But normally omit χ (only needed in Claim 4)
I Can replace two comparisons in lines 6-7 by equality-comparison.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 4 / 12

Improving binary search
Claim 1: This terminates.
Right sub-array is clearly smaller.
If ` < r , then m ≤ `+r

2 < r+r
2 < r so left sub-array is smaller.

Claim 2: This returns correctly.
Loop-invariant suprisingly tricky: A[`−1]<k≤A[r+1], plus others.
(See textbook).
Claim 3: This uses at most dlog ne+ 2 comparisons.

Sub-array has size ≤ dn/2e, so dlog ne rounds.
One comparison per round. At most 2 comparisons at the end.
Claim 4: If χ is used, then # comparisons ≤ dlog(2n + 1)e.
(Straightforward but tedious cases. See textbook for details.)

This uses the optimum number of comparisons and also in practice
performs better than binary-search.

I But normally omit χ (only needed in Claim 4)
I Can replace two comparisons in lines 6-7 by equality-comparison.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 4 / 12

Improving binary search
Claim 1: This terminates.
Right sub-array is clearly smaller.
If ` < r , then m ≤ `+r

2 < r+r
2 < r so left sub-array is smaller.

Claim 2: This returns correctly.
Loop-invariant suprisingly tricky: A[`−1]<k≤A[r+1], plus others.
(See textbook).
Claim 3: This uses at most dlog ne+ 2 comparisons.
Sub-array has size ≤ dn/2e, so dlog ne rounds.
One comparison per round. At most 2 comparisons at the end.

Claim 4: If χ is used, then # comparisons ≤ dlog(2n + 1)e.
(Straightforward but tedious cases. See textbook for details.)

This uses the optimum number of comparisons and also in practice
performs better than binary-search.

I But normally omit χ (only needed in Claim 4)
I Can replace two comparisons in lines 6-7 by equality-comparison.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 4 / 12

Improving binary search
Claim 1: This terminates.
Right sub-array is clearly smaller.
If ` < r , then m ≤ `+r

2 < r+r
2 < r so left sub-array is smaller.

Claim 2: This returns correctly.
Loop-invariant suprisingly tricky: A[`−1]<k≤A[r+1], plus others.
(See textbook).
Claim 3: This uses at most dlog ne+ 2 comparisons.
Sub-array has size ≤ dn/2e, so dlog ne rounds.
One comparison per round. At most 2 comparisons at the end.
Claim 4: If χ is used, then # comparisons ≤ dlog(2n + 1)e.

(Straightforward but tedious cases. See textbook for details.)

This uses the optimum number of comparisons and also in practice
performs better than binary-search.

I But normally omit χ (only needed in Claim 4)
I Can replace two comparisons in lines 6-7 by equality-comparison.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 4 / 12

Improving binary search
Claim 1: This terminates.
Right sub-array is clearly smaller.
If ` < r , then m ≤ `+r

2 < r+r
2 < r so left sub-array is smaller.

Claim 2: This returns correctly.
Loop-invariant suprisingly tricky: A[`−1]<k≤A[r+1], plus others.
(See textbook).
Claim 3: This uses at most dlog ne+ 2 comparisons.
Sub-array has size ≤ dn/2e, so dlog ne rounds.
One comparison per round. At most 2 comparisons at the end.
Claim 4: If χ is used, then # comparisons ≤ dlog(2n + 1)e.
(Straightforward but tedious cases. See textbook for details.)

This uses the optimum number of comparisons and also in practice
performs better than binary-search.

I But normally omit χ (only needed in Claim 4)
I Can replace two comparisons in lines 6-7 by equality-comparison.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 4 / 12

Outline

A tighter lower bound
Improving binary search
More on interpolation search
More on pruned tries

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022

Improving Interpolation Search

Had: Average-case run-time of interpolation-search is O(log log n).
This is very complicated to prove! I Study error, i.e., distance between index of k and where we probed.

I Argue that error is in O(
√
n) in first round.

I Argue that error is in O(1
2i n) after i rounds.

I Study the martingale formed by the errors in the rounds.
I Argue that its expected length is O(log log n).

Instead: Define a variant of interpolatation-search

I Better worst-case run-time.
I Easier to analyze.

Idea: Force the sub-array to have size
√
n

To do so, search for suitable sub-array with probes.
Crucial question: how many probes are needed?

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 5 / 12

Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10

↑m

≤ k

↑
probe

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First compare (“probe”) at m as before.

If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 ≈ size of currently studied sub-array)
Continue probing until > k or out-of-bounds
Recurse in the only sub-array where k can be; it has size O(

√
N).

Observe: # probes ∈ O(
√
N)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 6 / 12

Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10

↑m

≤ k

↑
probe

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First compare (“probe”) at m as before.
If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 ≈ size of currently studied sub-array)

Continue probing until > k or out-of-bounds
Recurse in the only sub-array where k can be; it has size O(

√
N).

Observe: # probes ∈ O(
√
N)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 6 / 12

Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10

↑m

≤ k

↑
probe

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First compare (“probe”) at m as before.
If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 ≈ size of currently studied sub-array)
Continue probing until > k or out-of-bounds

Recurse in the only sub-array where k can be; it has size O(
√
N).

Observe: # probes ∈ O(
√
N)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 6 / 12

Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10

↑m

≤ k

↑
probe

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First compare (“probe”) at m as before.
If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 ≈ size of currently studied sub-array)
Continue probing until > k or out-of-bounds

Recurse in the only sub-array where k can be; it has size O(
√
N).

Observe: # probes ∈ O(
√
N)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 6 / 12

Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10

↑m

≤ k

↑
probe

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First compare (“probe”) at m as before.
If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 ≈ size of currently studied sub-array)
Continue probing until > k or out-of-bounds
Recurse in the only sub-array where k can be; it has size O(

√
N).

Observe: # probes ∈ O(
√
N)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 6 / 12

Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10

↑m

≤ k

↑
probe

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First compare (“probe”) at m as before.
If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 ≈ size of currently studied sub-array)
Continue probing until > k or out-of-bounds
Recurse in the only sub-array where k can be; it has size O(

√
N).

Observe: # probes ∈ O(
√
N)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 6 / 12

Improving Interpolation Search

Interpolation-search-modified(A, n, k)
A: sorted array of size n, k: key
1. if (k < A[0] or k > A[n − 1]) return “not found”
2. if (k = A[n − 1]) return“found at index n−1”
3. `← 0, r ← n − 1 // have A[`] ≤ k < A[r]
4. while (N ← (r − `− 1) ≥ 1)
5. m← `+ d k−A[`])

A[r]−A[`] · (r − `− 1)e

6. if (A[m] ≤ k) // probe rightward
7. for h = 1, 2, . . .
8. `← m + (h−1)d

√
Ne, r ′ ← min{r ,m + hd

√
Ne}

9. if (r ′ = r or A[r ′] > k) then r ← r ′ and break
10. else . . . // symmetrically probe leftward

11. if (k = A[`]) return “found at index `”
12. else return “not found”

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 7 / 12

Analysis of interpolation-search-improved

T (n) ≤ T (size of sub-array) + O(#probes)

size of sub-array ≤
√
n + O(1), # probes ≤

√
n + O(1)

Use a sloppy recursion:

Tworst(n) ≤
{

c n ≤ 15
Tworst(

√
n) + c ·

√
n otherwise

Easy induction proof: Tworst(n) ≤ 2c
√
n.

Therefore worst-case run-time is O(
√
n).

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 8 / 12

Analysis of interpolation-search-improved

T (n) ≤ T (size of sub-array) + O(#probes)
size of sub-array ≤

√
n + O(1), # probes ≤

√
n + O(1)

Use a sloppy recursion:

Tworst(n) ≤
{

c n ≤ 15
Tworst(

√
n) + c ·

√
n otherwise

Easy induction proof: Tworst(n) ≤ 2c
√
n.

Therefore worst-case run-time is O(
√
n).

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 8 / 12

Analysis of interpolation-search-improved

T (n) ≤ T (size of sub-array) + O(#probes)
size of sub-array ≤

√
n + O(1), # probes ≤

√
n + O(1)

Use a sloppy recursion:

Tworst(n) ≤
{

c n ≤ 15
Tworst(

√
n) + c ·

√
n otherwise

Easy induction proof: Tworst(n) ≤ 2c
√
n.

Therefore worst-case run-time is O(
√
n).

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 8 / 12

Analysis of interpolation-search-improved

What is the number of probes on average?
Rephrase: If numbers are chosen uniformly at random, what is the
expected number of probes?
Claim: Expected number of probes is c ≤ 2.5.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 9 / 12

Analysis of interpolation-search-improved

Sloppy recursion: T avg(n) ≤
{

T avg(
√
n) + c n ≥ 4

c otherwise

Claim: This resolves to T avg(n) ≤ cdlog log ne.

Key ingredient: log log
√
n ≤ dlog log ne − 1.

Therefore the average-case # comparisons is ≤ 2.5dlog log ne.
Fewer than binary-search-optimized’s dlog ne+1 for n ≥ 16.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 10 / 12

Analysis of interpolation-search-improved

Sloppy recursion: T avg(n) ≤
{

T avg(
√
n) + c n ≥ 4

c otherwise
Claim: This resolves to T avg(n) ≤ cdlog log ne.

Key ingredient: log log
√
n ≤ dlog log ne − 1.

Therefore the average-case # comparisons is ≤ 2.5dlog log ne.
Fewer than binary-search-optimized’s dlog ne+1 for n ≥ 16.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 10 / 12

Analysis of interpolation-search-improved

Sloppy recursion: T avg(n) ≤
{

T avg(
√
n) + c n ≥ 4

c otherwise
Claim: This resolves to T avg(n) ≤ cdlog log ne.

Key ingredient: log log
√
n ≤ dlog log ne − 1.

Therefore the average-case # comparisons is ≤ 2.5dlog log ne.
Fewer than binary-search-optimized’s dlog ne+1 for n ≥ 16.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 10 / 12

Outline

A tighter lower bound
Improving binary search
More on interpolation search
More on pruned tries

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022

Pruned tries and MSD-radix sort

For bitstrings: Pruned trie equals recursion tree of MSD radix-sort.

0001$
0

0010$
1

0

0100$
0

0110$
0

0111$
1

1

1
0

1100$
0

1101$
10

1111$
11

1

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 11 / 12

Pruned tries and MSD-radix sort

For bitstrings: Pruned trie equals recursion tree of MSD radix-sort.

0111
1111
0110
0100
1100
1101
0001
0010

0111
0110
0100
0001
0010

0001
0010

00010

001010

0111
0110
0101

01000
0111
0110

01100

01111
1

10

1111
1100
1101

1111
1100
1101

1100
1101

11000

110110

11111
1

1

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 11 / 12

Pruned tries can store real numbers

If we have a generator for each bit of a real number, then we can store
them in a pruned trie.

π − 3
0 1/π

0

1/e
1

0
0

√
2− 1

1

1
0

sin(π/5)
0

1/
√

2
0

e − 2
1

101
1

0

1

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 12 / 12

	A tighter lower bound
	A tighter lower bound

	Improving binary search
	Improving binary search
	Improving binary search

	More on interpolation search
	Improving Interpolation Search
	Improving Interpolation Search
	Improving Interpolation Search
	Analysis of interpolation-search-improved
	Analysis of interpolation-search-improved
	Analysis of interpolation-search-improved

	More on pruned tries
	Pruned tries and MSD-radix sort
	Pruned tries can store real numbers

