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A tighter lower bound

Create 2n + 1 instances:
Items: x0

“k=x0”

x1

“k=x1”

x2

“k=x2”

x3

“k=x3”

x4

“k=x4”

x5

“k=x5”

x6

“k=x6”

<x0 (x0, x1) (x1, x2) (x2, x3) (x3, x4) (x4, x5) (x5, x6) (x6, x7) (xn−2, xn−1) >xn−1

. . . xn−1

“k=xn−1”
Search:

Claim: These instances must lead to distinct leaves (assuming no
equality-comparison).

So we require at least dlog(2n + 1)e comparisons.
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Improving binary search
binary-search uses ≈ 2 log n comparisons.
Goal: Improve it to use dlog(2n + 1)e ≈ log n + 1 comparisons.
Main ingredient: Do only one comparison per round.

binary-search-optimized(A, n, k)
A: Sorted array of size n, k: key
1. `← 0, r ← n − 1, χ← 0
2. while (` < r)

3. m← b `+r
2 c

4. if (A[m] < k) then `← m + 1
5. else r ← m, χ← 1 // this is different!
6. if (k < A[`]) then return “not found, between A[`−1] and A[`]”
7. else if χ = 1 or (k ≤ A[`]) then return “found at A[`]”
8. else “not found, between A[`] and A[`+1]”

(χ needed for optimum # of comparisons, but not normally used)
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Improving binary search
Claim 1: This terminates.

Right sub-array is clearly smaller.
If ` < r , then m ≤ `+r

2 < r+r
2 < r so left sub-array is smaller.

Claim 2: This returns correctly.
Loop-invariant suprisingly tricky: A[`−1]<k≤A[r+1], plus others.
(See textbook).
Claim 3: This uses at most dlog ne+ 2 comparisons.
Sub-array has size ≤ dn/2e, so dlog ne rounds.
One comparison per round. At most 2 comparisons at the end.
Claim 4: If χ is used, then # comparisons ≤ dlog(2n + 1)e.
(Straightforward but tedious cases. See textbook for details.)

This uses the optimum number of comparisons and also in practice
performs better than binary-search.

I But normally omit χ (only needed in Claim 4)
I Can replace two comparisons in lines 6-7 by equality-comparison.
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Improving Interpolation Search

Had: Average-case run-time of interpolation-search is O(log log n).
This is very complicated to prove! I Study error, i.e., distance between index of k and where we probed.

I Argue that error is in O(
√
n) in first round.

I Argue that error is in O( 1
2i n) after i rounds.

I Study the martingale formed by the errors in the rounds.
I Argue that its expected length is O(log log n).


Instead: Define a variant of interpolatation-search

I Better worst-case run-time.
I Easier to analyze.

Idea: Force the sub-array to have size
√
n

To do so, search for suitable sub-array with probes.
Crucial question: how many probes are needed?
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Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10

↑m

≤ k

↑
probe

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First compare (“probe”) at m as before.

If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 ≈ size of currently studied sub-array)
Continue probing until > k or out-of-bounds
Recurse in the only sub-array where k can be; it has size O(

√
N).

Observe: # probes ∈ O(
√
N)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 6 / 12



Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10

↑m

≤ k

↑
probe

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First compare (“probe”) at m as before.
If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 ≈ size of currently studied sub-array)

Continue probing until > k or out-of-bounds
Recurse in the only sub-array where k can be; it has size O(

√
N).

Observe: # probes ∈ O(
√
N)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 6 / 12



Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10

↑m

≤ k

↑
probe

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First compare (“probe”) at m as before.
If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 ≈ size of currently studied sub-array)
Continue probing until > k or out-of-bounds

Recurse in the only sub-array where k can be; it has size O(
√
N).

Observe: # probes ∈ O(
√
N)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 6 / 12



Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10

↑m

≤ k

↑
probe

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First compare (“probe”) at m as before.
If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 ≈ size of currently studied sub-array)
Continue probing until > k or out-of-bounds

Recurse in the only sub-array where k can be; it has size O(
√
N).

Observe: # probes ∈ O(
√
N)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 6 / 12



Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10

↑m

≤ k

↑
probe

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First compare (“probe”) at m as before.
If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 ≈ size of currently studied sub-array)
Continue probing until > k or out-of-bounds
Recurse in the only sub-array where k can be; it has size O(

√
N).

Observe: # probes ∈ O(
√
N)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 6 / 12



Improving Interpolation Search

0 1 2 3 4 5 6 7 8 9 10

↑m

≤ k

↑
probe

≤ k

↑
probe

≤ k

↑
probe

> k
use this sub-array

First compare (“probe”) at m as before.
If A[m] ≤ k, probe rightward.
Probes always go d

√
Ne indices rightward

(where N = r − `− 1 ≈ size of currently studied sub-array)
Continue probing until > k or out-of-bounds
Recurse in the only sub-array where k can be; it has size O(

√
N).

Observe: # probes ∈ O(
√
N)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 6E Winter 2022 6 / 12



Improving Interpolation Search

Interpolation-search-modified(A, n, k)
A: sorted array of size n, k: key
1. if (k < A[0] or k > A[n − 1]) return “not found”
2. if (k = A[n − 1]) return“found at index n−1”
3. `← 0, r ← n − 1 // have A[`] ≤ k < A[r ]
4. while (N ← (r − `− 1) ≥ 1)
5. m← `+ d k−A[`])

A[r ]−A[`] · (r − `− 1)e

6. if (A[m] ≤ k) // probe rightward
7. for h = 1, 2, . . .
8. `← m + (h−1)d

√
Ne, r ′ ← min{r ,m + hd

√
Ne}

9. if (r ′ = r or A[r ′] > k) then r ← r ′ and break
10. else . . . // symmetrically probe leftward

11. if (k = A[`]) return “found at index `”
12. else return “not found”
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Analysis of interpolation-search-improved

T (n) ≤ T (size of sub-array) + O(#probes)

size of sub-array ≤
√
n + O(1), # probes ≤

√
n + O(1)

Use a sloppy recursion:

Tworst(n) ≤
{

c n ≤ 15
Tworst(

√
n) + c ·

√
n otherwise

Easy induction proof: Tworst(n) ≤ 2c
√
n.

Therefore worst-case run-time is O(
√
n).
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Analysis of interpolation-search-improved

What is the number of probes on average?
Rephrase: If numbers are chosen uniformly at random, what is the
expected number of probes?
Claim: Expected number of probes is c ≤ 2.5.
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Analysis of interpolation-search-improved

Sloppy recursion: T avg(n) ≤
{

T avg(
√
n) + c n ≥ 4

c otherwise

Claim: This resolves to T avg(n) ≤ cdlog log ne.

Key ingredient: log log
√
n ≤ dlog log ne − 1.

Therefore the average-case # comparisons is ≤ 2.5dlog log ne.
Fewer than binary-search-optimized’s dlog ne+1 for n ≥ 16.
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Pruned tries and MSD-radix sort

For bitstrings: Pruned trie equals recursion tree of MSD radix-sort.

0001$
0

0010$
1

0

0100$
0

0110$
0

0111$
1

1

1
0

1100$
0

1101$
10

1111$
11

1
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Pruned tries and MSD-radix sort

For bitstrings: Pruned trie equals recursion tree of MSD radix-sort.

0111
1111
0110
0100
1100
1101
0001
0010

0111
0110
0100
0001
0010

0001
0010

00010

001010

0111
0110
0101

01000
0111
0110

01100

01111
1

10

1111
1100
1101

1111
1100
1101

1100
1101

11000

110110

11111
1

1
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Pruned tries can store real numbers

If we have a generator for each bit of a real number, then we can store
them in a pruned trie.

π − 3
0 1/π

0

1/e
1

0
0

√
2− 1

1

1
0

sin(π/5)
0

1/
√

2
0

e − 2
1

101
1

0

1
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