
CS 240 – Data Structures and Data Management

Module 8: Range-Searching - Enriched

T. Biedl E. Kondratovsky M. Petrick O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2022

version 2022-03-01 15:58

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 1 / 15

Outline

1 More on range-searching
Boundary nodes in kd-trees
3-sided range search

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022

Outline

1 More on range-searching
Boundary nodes in kd-trees
3-sided range search

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022

Bounday nodes in kd-trees

Recall: Q(n) are the boundary-nodes (blue).
Goal: Q(n) ∈ O(

√
n).

`W `E

`S

`N

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9 x<p8.x?

y<p1.y?

x<p2.x?

p0 p2

x<p9.x?

p3 y<p9.y?

p1 p9

y<p6.y?

x<p5.x?

p7 p5

x<p6.x?

p8 y<p4.y?

p6 p4

Observation: If v is a boundary-node, then its associated region
intersects one of the lines `W , `N , `E , `S that support the query-rectangle.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 2 / 15

Boundary nodes in kd-trees

Q(n, `) := max
kd-trees with n points

number of associated regions
that intersect a given line `

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

This is independent of ` (shift points), so only consider whether ` is
horizontal or vertical Qv (n),Qh(n)

Q(n) ≤ Q(n, `W) + Q(n, `N) + Q(n, `E) + Q(n, `S)
≤ 2Qv (n) + 2Qh(n)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 3 / 15

Boundary nodes in kd-trees

Goal: Qv (n) ≤ 2Qv (n/4) + 2.

p0

p1

p2

p3

p4

p5
p6

p7

p8

p9

`
R2

x<p8.x?

{(x , y) : x<p8.x}
y<p1.y?

kd-tree on at
most dn/4e
points

Y

kd-tree on at
most dn/4e
points

N

Y

No associated region
is intersected by `

N

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 4 / 15

Boundary nodes in kd-trees

Goal: Qv (n) ≤ 2Qv (n/4) + 2.

p0

p1

p2

p3

p4

p5
p6

p7

p8

p9

`
R2

x<p8.x?

{(x , y) : x<p8.x}
y<p1.y?

kd-tree on at
most dn/4e
points

Y

kd-tree on at
most dn/4e
points

N

Y

No associated region
is intersected by `

N

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 4 / 15

Boundary nodes in kd-trees

Goal: Qv (n) ≤ 2Qv (n/4) + 2.

p0

p1

p2

p3

p4

p5
p6

p7

p8

p9

`
R2

x<p8.x?

{(x , y) : x<p8.x}
y<p1.y?

kd-tree on at
most dn/4e
points

Y

kd-tree on at
most dn/4e
points

N

Y

No associated region
is intersected by `

N

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 4 / 15

Boundary nodes in kd-trees

Qv (n) ≤ 2Qv (n/4) + 2 ⇒ Qv (n) ∈ O(
√
n)

Similarly: Qh(n) ≤ 2Qh(n/4) + 3 ⇒ Qh(n) ∈ O(
√
n)

Q(n) ≤ 2Qv (n) + 2Qh(n) ∈ O(
√
n)

Theorem: In a range-query in a kd-tree (of points in general position)
there are O(

√
n) boundary-nodes.

So range-search takes O(
√
n + s) time.

Note: It is crucial that we have ≈ n/4 points in each grand-child of
the root.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 5 / 15

Boundary nodes in kd-trees

Qv (n) ≤ 2Qv (n/4) + 2 ⇒ Qv (n) ∈ O(
√
n)

Similarly: Qh(n) ≤ 2Qh(n/4) + 3 ⇒ Qh(n) ∈ O(
√
n)

Q(n) ≤ 2Qv (n) + 2Qh(n) ∈ O(
√
n)

Theorem: In a range-query in a kd-tree (of points in general position)
there are O(

√
n) boundary-nodes.

So range-search takes O(
√
n + s) time.

Note: It is crucial that we have ≈ n/4 points in each grand-child of
the root.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 5 / 15

Boundary nodes in kd-trees

Qv (n) ≤ 2Qv (n/4) + 2 ⇒ Qv (n) ∈ O(
√
n)

Similarly: Qh(n) ≤ 2Qh(n/4) + 3 ⇒ Qh(n) ∈ O(
√
n)

Q(n) ≤ 2Qv (n) + 2Qh(n) ∈ O(
√
n)

Theorem: In a range-query in a kd-tree (of points in general position)
there are O(

√
n) boundary-nodes.

So range-search takes O(
√
n + s) time.

Note: It is crucial that we have ≈ n/4 points in each grand-child of
the root.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 5 / 15

Boundary nodes in kd-trees

Qv (n) ≤ 2Qv (n/4) + 2 ⇒ Qv (n) ∈ O(
√
n)

Similarly: Qh(n) ≤ 2Qh(n/4) + 3 ⇒ Qh(n) ∈ O(
√
n)

Q(n) ≤ 2Qv (n) + 2Qh(n) ∈ O(
√
n)

Theorem: In a range-query in a kd-tree (of points in general position)
there are O(

√
n) boundary-nodes.

So range-search takes O(
√
n + s) time.

Note: It is crucial that we have ≈ n/4 points in each grand-child of
the root.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 5 / 15

Outline

1 More on range-searching
Boundary nodes in kd-trees
3-sided range search

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022

3-sided range search

Consider a special kind of range-search:
3sidedRangeSearch(x1, x2, y ′): return (x , y) with x1 ≤ x ≤ x2

and y ≥ y ′.

(1, 5)

(2, 7)

(3, 1)

(4, 4)

(5, 13)

(6, 15)

(7, 11)
(8, 10)

(9, 6)

(10, 12)

(11, 8)

(12, 14)

(13, 2)

(14, 9)

(15, 16)

(16, 3)

Can we adapt previous ideas to achieve O(n) space and fast range-search
time?

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 6 / 15

Idea 1: Associated heaps

1

(1, 5)(1, 5)

2

(2, 7)(2, 7)

3

(3, 1)(3, 1)

4

(4, 4)(4, 4)

5

13
(5, 13)(5, 13)

6

15
(6, 15)(6, 15)

7

11
(7, 11)(7, 11)

8

10
(8, 10)(8, 10)

9

6
(9, 6)(9, 6)

10

(10, 12)(10, 12)

11

(11, 8)
8

(11, 8)

12

(12, 14)
14

(12, 14)

13

(13, 2)
2

(13, 2)

14

(14, 9)(14, 9)

15

(15, 16)(15, 16)

16

(16, 3)(16, 3)

T (6)
(heap) T (12)

(heap)

primary tree T

Primary tree:
balanced binary
search tree.
Associated tree:
binary heap.
Space:
Θ(n log n).
Range-search
time?

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 7 / 15

Idea 1: Associated heaps - 3-sided range search

(1, 5)

(2, 7)

(3, 1)

(4, 4)

(5, 13)

(6, 15)

(7, 11)

(8, 10)

(9, 6)

(10, 12)

(11, 8)

(12, 14)

(13, 2)

(14, 9)

(15, 16)

(16, 3)

Search in primary
as before.
In associated
heap: Search by
y -coordinate in
O(1 + s) time.
(Exercise.)
Total time:
O(log n + s)
But space is ω(n)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 8 / 15

Idea 1: Associated heaps - 3-sided range search

1

(1, 5)

2

(2, 7)

3

(3, 1)

4

(4, 4)

5

(5, 13)

6

(6, 15)

7

(7, 11)

8

(8, 10)

9

(9, 6)

10

(10, 12)

11

(11, 8)

12

(12, 14)

13

(13, 2)

14

(14, 9)

15

(15, 16)

16

(16, 3)

primary tree T

Search in primary
as before.

In associated
heap: Search by
y -coordinate in
O(1 + s) time.
(Exercise.)
Total time:
O(log n + s)
But space is ω(n)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 8 / 15

Idea 1: Associated heaps - 3-sided range search

1

(1, 5)(1, 5)

2

(2, 7)(2, 7)

3

(3, 1)(3, 1)

4

(4, 4)(4, 4)

5

13
(5, 13)(5, 13)

6

15
(6, 15)(6, 15)

7

11
(7, 11)(7, 11)

8

10
(8, 10)(8, 10)

9

6
(9, 6)(9, 6)

10

(10, 12)(10, 12)

11

(11, 8)
8

(11, 8)

12

(12, 14)
14

(12, 14)

13

(13, 2)
2

(13, 2)

14

(14, 9)(14, 9)

15

(15, 16)(15, 16)

16

(16, 3)(16, 3)

T (6)
(heap) T (12)

(heap)

primary tree T

Search in primary
as before.
In associated
heap: Search by
y -coordinate in
O(1 + s) time.
(Exercise.)

Total time:
O(log n + s)
But space is ω(n)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 8 / 15

Idea 1: Associated heaps - 3-sided range search

1

(1, 5)(1, 5)

2

(2, 7)(2, 7)

3

(3, 1)(3, 1)

4

(4, 4)(4, 4)

5

13
(5, 13)(5, 13)

6

15
(6, 15)(6, 15)

7

11
(7, 11)(7, 11)

8

10
(8, 10)(8, 10)

9

6
(9, 6)(9, 6)

10

(10, 12)(10, 12)

11

(11, 8)
8

(11, 8)

12

(12, 14)
14

(12, 14)

13

(13, 2)
2

(13, 2)

14

(14, 9)(14, 9)

15

(15, 16)(15, 16)

16

(16, 3)(16, 3)

T (6)
(heap) T (12)

(heap)

primary tree T

Search in primary
as before.
In associated
heap: Search by
y -coordinate in
O(1 + s) time.
(Exercise.)
Total time:
O(log n + s)
But space is ω(n)

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 8 / 15

Idea 2: Cartesian Trees

Recall: Treap = binary search tree (with respect to keys)
+ heap (with respect to priorities)

52
74

35
70

15
65

9
61

27
59

22
42

29
19

42
55

39
48

37
42

41
8

46
49

49
37

74
73

65
59

60
33

69
48

97
26

86
13

Cartesian tree: Use x -coordinate as key, y -coordinate as priority.
Space: Θ(n).

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 9 / 15

Idea 2: Cartesian Tree - 3-sided range search
CartesianTree::3-sided-range-search(T , 28, 47, 36) :

52
74

35
70

15
65

9
61

27
59

22
42

29
19

42
55

39
48

37
42

41
8

46
49

49
37

74
73

65
59

60
33

69
48

97
26

86
13

BST::range-search(x1, x2) to get boundary and topmost inside nodes.

Boundary-nodes: Explicitly test whether in x -range and y -range.
Topmost inside-nodes: If y ≥ y1, report and recurse in children.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 10 / 15

Idea 2: Cartesian Tree - 3-sided range search
CartesianTree::3-sided-range-search(T , 28, 47, 36) :

52
74

35
70

15
65

9
61

27
59

22
42

29
19

42
55

39
48

37
42

41
8

46
49

49
37

74
73

65
59

60
33

69
48

97
26

86
13

BST::range-search(x1, x2) to get boundary and topmost inside nodes.
Boundary-nodes: Explicitly test whether in x -range and y -range.

Topmost inside-nodes: If y ≥ y1, report and recurse in children.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 10 / 15

Idea 2: Cartesian Tree - 3-sided range search
CartesianTree::3-sided-range-search(T , 28, 47, 36) :

52
74

35
70

15
65

9
61

27
59

22
42

29
19

42
55

39
48

37
42

41
8

46
49

49
37

74
73

65
59

60
33

69
48

97
26

86
13

BST::range-search(x1, x2) to get boundary and topmost inside nodes.
Boundary-nodes: Explicitly test whether in x -range and y -range.
Topmost inside-nodes: If y ≥ y1, report and recurse in children.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 10 / 15

Idea 2: Cartesian Tree - 3-sided range search
CartesianTree::3-sided-range-search(T , 28, 47, 36) :

52
74

35
70

15
65

9
61

27
59

22
42

29
19

42
55

39
48

37
42

41
8

46
49

49
37

74
73

65
59

60
33

69
48

97
26

86
13

BST::range-search(x1, x2) to get boundary and topmost inside nodes.
Boundary-nodes: Explicitly test whether in x -range and y -range.
Topmost inside-nodes: If y ≥ y1, report and recurse in children.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 10 / 15

Idea 2: Cartesian Tree - 3-sided range search

Run-time for 3-sided range search:
BST::range-search(x1, x2) — O(height) since we do not report points.
Testing boundary-nodes: O(height)
Testing heap: O(1 + sv) per topmost inside-node v

⇒ O(height + s) run-time, O(n) space

But: No guarantees on the height (not even in expectation) since we
cannot choose priorities.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 11 / 15

Idea 3: Priority search trees
Design a new data structure
Keep good aspects of Cartesian trees (store y -coordinates in
heap-order)
Keep good aspects of kd-tree (split in half by x -coordinate)

(52,74)
x<37?

(35,70)
x<22?

(15,65)
x<9?

(9.61)

(27,59)
x<25?

(22,42) (25,19)

(42,55)
x<41?

(39,48)
x<37?

(37,42)

(46,49)
x<49?

(41,8) (49,37)

Key idea: The x -coordinate stored for splitting can be different from the
x -coordinate of the stored point.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 12 / 15

Idea 3: Priority search trees

(52,74)
x<37?

(35,70)
x<22?

(15,65)
x<9?

(9.61)

(27,59)
x<25?

(22,42) (25,19)

(42,55)
x<41?

(39,48)
x<37?

(37,42)

(46,49)
x<49?

(41,8) (49,37)

every node v stores a point pv = (xv , yv),
I yv is the maximum y -coordinate in subtree (heap-property!)

every non-leaf v stores an x -coordinate x ′
v (split-line)

I Every point p in left subtree has p.x < x ′
v

I Every point p in right subtree has p.x ≥ x ′
v

x ′
v is chosen so that tree is balanced ⇒ height O(log n).

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 13 / 15

Idea 3: Priority search trees
(52,74)
x<37?

(35,70)
x<22?

(15,65)
x<9?

(9.61)

(27,59)
x<25?

(22,42) (25,19)

(42,55)
x<41?

(39,48)
x<37?

(37,42)

(46,49)
x<49?

(41,8) (49,37)

Construction: O(n log n) time (exercise)
search: O(log n) time

I Get search-path by following split-lines, check all nodes on path
insert, delete: Re-balancing is difficult, but can be done (no details).
3-sided range search: As for Cartesian trees, but height now O(log n).

I Run-time O(log n + s)
Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 14 / 15

3-sided range search summary

Idea 1: Scapegoat tree + associated heaps
O(log n + s) time for range search, but ω(n) space.
Idea 2: Cartesian Tree
O(n) space, but range search takes O(height + s), could be slow
Idea 3: Priority search tree
O(n) space, O(log n + s) time for range search.

Sometimes it pays to design purpose-built data structures.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 15 / 15

	More on range-searching
	Boundary nodes in kd-trees
	Bounday nodes in kd-trees
	Boundary nodes in kd-trees
	Boundary nodes in kd-trees
	Boundary nodes in kd-trees

	3-sided range search
	3-sided range search
	Idea 1: Associated heaps
	Idea 1: Associated heaps - 3-sided range search
	Idea 2: Cartesian Trees
	Idea 2: Cartesian Tree - 3-sided range search
	Idea 2: Cartesian Tree - 3-sided range search
	Idea 3: Priority search trees
	Idea 3: Priority search trees
	Idea 3: Priority search trees
	3-sided range search summary

