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Bounday nodes in kd-trees

Recall: Q(n) are the boundary-nodes (blue).
Goal: Q(n) ∈ O(

√
n).
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Observation: If v is a boundary-node, then its associated region
intersects one of the lines `W , `N , `E , `S that support the query-rectangle.
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Boundary nodes in kd-trees

Q(n, `) := max
kd-trees with n points

number of associated regions
that intersect a given line `
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This is independent of ` (shift points), so only consider whether ` is
horizontal or vertical  Qv (n),Qh(n)

Q(n) ≤ Q(n, `W ) + Q(n, `N) + Q(n, `E ) + Q(n, `S)
≤ 2Qv (n) + 2Qh(n)
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Boundary nodes in kd-trees

Goal: Qv (n) ≤ 2Qv (n/4) + 2.
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Boundary nodes in kd-trees

Qv (n) ≤ 2Qv (n/4) + 2 ⇒ Qv (n) ∈ O(
√
n)

Similarly: Qh(n) ≤ 2Qh(n/4) + 3 ⇒ Qh(n) ∈ O(
√
n)

Q(n) ≤ 2Qv (n) + 2Qh(n) ∈ O(
√
n)

Theorem: In a range-query in a kd-tree (of points in general position)
there are O(

√
n) boundary-nodes.

So range-search takes O(
√
n + s) time.

Note: It is crucial that we have ≈ n/4 points in each grand-child of
the root.
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3-sided range search

Consider a special kind of range-search:
3sidedRangeSearch(x1, x2, y ′): return (x , y) with x1 ≤ x ≤ x2

and y ≥ y ′.

(1, 5)

(2, 7)

(3, 1)

(4, 4)

(5, 13)

(6, 15)

(7, 11)
(8, 10)

(9, 6)

(10, 12)

(11, 8)

(12, 14)

(13, 2)

(14, 9)

(15, 16)

(16, 3)

Can we adapt previous ideas to achieve O(n) space and fast range-search
time?
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Idea 1: Associated heaps

1

(1, 5)(1, 5)

2

(2, 7)(2, 7)
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(3, 1)(3, 1)
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(4, 4)(4, 4)
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(5, 13)(5, 13)
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(6, 15)(6, 15)

7

11
(7, 11)(7, 11)

8

10
(8, 10)(8, 10)

9

6
(9, 6)(9, 6)

10

(10, 12)(10, 12)

11

(11, 8)
8

(11, 8)

12

(12, 14)
14

(12, 14)

13

(13, 2)
2

(13, 2)

14

(14, 9)(14, 9)

15

(15, 16)(15, 16)

16

(16, 3)(16, 3)

T (6)
(heap) T (12)

(heap)

primary tree T

Primary tree:
balanced binary
search tree.
Associated tree:
binary heap.
Space:
Θ(n log n).
Range-search
time?
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Idea 1: Associated heaps - 3-sided range search

(1, 5)

(2, 7)

(3, 1)

(4, 4)

(5, 13)

(6, 15)

(7, 11)

(8, 10)

(9, 6)

(10, 12)

(11, 8)

(12, 14)

(13, 2)

(14, 9)

(15, 16)

(16, 3)

Search in primary
as before.
In associated
heap: Search by
y -coordinate in
O(1 + s) time.
(Exercise.)
Total time:
O(log n + s)
But space is ω(n)
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Idea 2: Cartesian Trees

Recall: Treap = binary search tree (with respect to keys)
+ heap (with respect to priorities)

52
74

35
70

15
65

9
61

27
59

22
42

29
19

42
55

39
48

37
42

41
8

46
49

49
37

74
73

65
59

60
33

69
48

97
26

86
13

Cartesian tree: Use x -coordinate as key, y -coordinate as priority.
Space: Θ(n).
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Idea 2: Cartesian Tree - 3-sided range search
CartesianTree::3-sided-range-search(T , 28, 47, 36) :

52
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55
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48
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41
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46
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74
73

65
59

60
33

69
48

97
26

86
13

BST::range-search(x1, x2) to get boundary and topmost inside nodes.

Boundary-nodes: Explicitly test whether in x -range and y -range.
Topmost inside-nodes: If y ≥ y1, report and recurse in children.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 10 / 15



Idea 2: Cartesian Tree - 3-sided range search
CartesianTree::3-sided-range-search(T , 28, 47, 36) :

52
74

35
70

15
65

9
61

27
59

22
42

29
19

42
55

39
48

37
42

41
8

46
49

49
37

74
73

65
59

60
33

69
48

97
26

86
13

BST::range-search(x1, x2) to get boundary and topmost inside nodes.
Boundary-nodes: Explicitly test whether in x -range and y -range.

Topmost inside-nodes: If y ≥ y1, report and recurse in children.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 10 / 15



Idea 2: Cartesian Tree - 3-sided range search
CartesianTree::3-sided-range-search(T , 28, 47, 36) :

52
74

35
70

15
65

9
61

27
59

22
42

29
19

42
55

39
48

37
42

41
8

46
49

49
37

74
73

65
59

60
33

69
48

97
26

86
13

BST::range-search(x1, x2) to get boundary and topmost inside nodes.
Boundary-nodes: Explicitly test whether in x -range and y -range.
Topmost inside-nodes: If y ≥ y1, report and recurse in children.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 10 / 15



Idea 2: Cartesian Tree - 3-sided range search
CartesianTree::3-sided-range-search(T , 28, 47, 36) :

52
74

35
70

15
65

9
61

27
59

22
42

29
19

42
55

39
48

37
42

41
8

46
49

49
37

74
73

65
59

60
33

69
48

97
26

86
13

BST::range-search(x1, x2) to get boundary and topmost inside nodes.
Boundary-nodes: Explicitly test whether in x -range and y -range.
Topmost inside-nodes: If y ≥ y1, report and recurse in children.

Biedl,Kondratovsky,Petrick,Veksler (CS-UW) CS240 – Module 8 Winter 2022 10 / 15



Idea 2: Cartesian Tree - 3-sided range search

Run-time for 3-sided range search:
BST::range-search(x1, x2) — O(height) since we do not report points.
Testing boundary-nodes: O(height)
Testing heap: O(1 + sv ) per topmost inside-node v

⇒ O(height + s) run-time, O(n) space

But: No guarantees on the height (not even in expectation) since we
cannot choose priorities.
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Idea 3: Priority search trees
Design a new data structure
Keep good aspects of Cartesian trees (store y -coordinates in
heap-order)
Keep good aspects of kd-tree (split in half by x -coordinate)

(52,74)
x<37?

(35,70)
x<22?

(15,65)
x<9?

(9.61)

(27,59)
x<25?

(22,42) (25,19)

(42,55)
x<41?

(39,48)
x<37?

(37,42)

(46,49)
x<49?

(41,8) (49,37)

Key idea: The x -coordinate stored for splitting can be different from the
x -coordinate of the stored point.
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Idea 3: Priority search trees

(52,74)
x<37?

(35,70)
x<22?

(15,65)
x<9?

(9.61)

(27,59)
x<25?

(22,42) (25,19)

(42,55)
x<41?

(39,48)
x<37?

(37,42)

(46,49)
x<49?

(41,8) (49,37)

every node v stores a point pv = (xv , yv ),
I yv is the maximum y -coordinate in subtree (heap-property!)

every non-leaf v stores an x -coordinate x ′
v (split-line)

I Every point p in left subtree has p.x < x ′
v

I Every point p in right subtree has p.x ≥ x ′
v

x ′
v is chosen so that tree is balanced ⇒ height O(log n).
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Idea 3: Priority search trees
(52,74)
x<37?

(35,70)
x<22?

(15,65)
x<9?

(9.61)

(27,59)
x<25?

(22,42) (25,19)

(42,55)
x<41?

(39,48)
x<37?

(37,42)

(46,49)
x<49?

(41,8) (49,37)

Construction: O(n log n) time (exercise)
search: O(log n) time

I Get search-path by following split-lines, check all nodes on path
insert, delete: Re-balancing is difficult, but can be done (no details).
3-sided range search: As for Cartesian trees, but height now O(log n).

I Run-time O(log n + s)
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3-sided range search summary

Idea 1: Scapegoat tree + associated heaps
O(log n + s) time for range search, but ω(n) space.
Idea 2: Cartesian Tree
O(n) space, but range search takes O(height + s), could be slow
Idea 3: Priority search tree
O(n) space, O(log n + s) time for range search.

Sometimes it pays to design purpose-built data structures.
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