Final Help Session

Note: This is a sample of problems designed to help prepare for the final exam. These problems do not encompass the entire coverage of the exam, and should not be used as a reference for its content. Also, these problems aren't organized by difficulty, but by the order in which the relevant concepts were taught.

1 True/False

For each statement below, write true or false.
a) Open addressing hashing that uses linear probing will require two hash functions.
b) Run-length encoding may result in text expansion on some strings.
c) When doing range search on a quadtree, if there is no point within the range specified, the worst case runtime complexity is in $\Theta(h)$.
d) Suffix trees for pattern matching require preprocessing the pattern.
e) Inserting a set of keys into an empty compressed trie will always result in the same final trie regardless of the insertion order.
f) The runtime complexity of range query for kd-trees depends on the spread factor of points. The spread factor is the ratio of the side length of the minimum bounding box (whose bottom left corner is at $(0,0)$) to to the minimum distance between the points. We assume the points have nonnegative coordinates (we can translate them if necessary).
g) When using KMP to search for the pattern a^{m} in the text $\mathrm{a}^{n-1} b$, the positions of the pattern shifts are the same as the brute-force algorithm.
h) Rehashing may be required in Cuckoo Hashing even if the load factor is at an acceptable value.
i) Every AVL Tree is also a 2-4 Tree.
j) Move-to-front transformation uses adaptive instead of static dictionaries.

2 Multiple Choice

Pick the best answer for each question.
a) Which of the following functions $f(i)$ would cause interpolation search to have the least worst-case runtime on an array A with $A[i]=f(i)$?
a) $f(i)=\log (i)$
b) $f(i)=i$
c) $f(i)=i^{2}$
d) $f(i)=2^{i}$
b) Given $h_{0}(k)=k \bmod 7$ with two hash tables, each of size 7 , which of the following hash functions would be most suitable for h_{1} in double hashing?
i) $h_{1}(k)=k^{2} \bmod 7$
ii) $h_{1}(k)=(k \bmod 6)+1$
iii) $h_{1}(k)=2 \cdot(k \bmod 4)$
iv) $h_{1}(k)=\left\lfloor\frac{1}{2} \cdot(k \bmod 13)\right\rfloor$
c) Given $h_{0}(k)=k \bmod 7$ with two hash tables, each of size 7 , which of the following hash functions would be most suitable for h_{1} in cuckoo hashing?
i) $h_{1}(k)=k^{2} \bmod 7$
ii) $h_{1}(k)=(k \bmod 6)+1$
iii) $h_{1}(k)=2 \cdot(k \bmod 4)$
iv) $h_{1}(k)=\left\lfloor\frac{1}{2} \cdot(k \bmod 13)\right\rfloor$
d) If the root of a quadtree represents the region $[0,128) \times[0,128)$ while the deepest (lowest) internal node represents the region $[88,92) \times[24,28)$, what is the height of the quadtree?
a) 4
b) 5
c) 6
d) 7
e) Which one of the following statements about compressed tries is false?
i) Every internal node stores an index indicating the bit position to be tested on a search.
ii) The root of the compressed trie always tests the first bit.
iii) A compressed trie that stores n keys always contains less than n internal nodes.
iv) The height of a compressed trie never exceeds the length of the longest string it stores.
f) Which of the following search operations on a non-dictionary structure has the most efficient worst-case runtime?
i) Searching for a specific key in a max-heap.
ii) Searching for a specific point in a kd-tree with points in general position.
iii) Searching for any occurrence of a specific character in a text using a suffix tree, with children pointers stored as arrays.
iv) Searching for a specific character in a decoding trie of characters (like Huffman's Trie)

3 Hashing

Let $p \geq 3$ be prime, and consider the universe of keys $U=\left\{0,1, \ldots, p^{2}-1\right\}$. Answer each question for an initially empty hash table of size p.
a) Using double hashing with $h_{1}(k)=k \bmod p$ and $h_{2}(k)=\lfloor k / p\rfloor+1$, give a sequence of two keys to be inserted that results in failure.
b) Using cuckoo hashing with $h_{1}(k)=k \bmod p$ and $h_{2}(k)=k \bmod (p-1)+1$ and one table, give a sequence of three keys to be inserted that results in failure.
c) Using cuckoo hashing with $h_{1}(k)=k \bmod p$ and $h_{2}(k)=\lfloor k / p\rfloor$ and one table, give a sequence of three keys to be inserted that results in failure.

4 Boyer-Moore

Boyer-Moore can be modified in many ways. For each of the modifications listed below, state whether or not the modification is valid, i.e., the modified Boyer-Moore will always successfully find the first occurrence of P in T, if P appears in T, or return FAIL if P is not in T. If the answer is "Yes", provide a brief explanation of why it is still valid. If the answer is "No", demonstrate a counterexample, i.e., trace the algorithm on a specific P and T of your choice where the result is incorrect.

Note: We are using Boyer-Moore with only the Bad Character heuristic here.
a) Using a first-occurrence function (denoting the index of the first occurrence of the argument character) instead of a last-occurrence function.
b) When checking a pattern shift, compare characters from the start of the pattern and move forward, instead of scanning backwards from the end of the pattern.
c) Use the last-occurrence function for $P[0 \ldots m-2]$, i.e., P with its last character removed, instead of the last-occurrence function for P.

5 Quad Trees

a) Create a set of 8 distinct points for which all coordinates are integers in the range $[0,8)$ and that has the following quad-tree.
b) Given a quad-tree T , what is the smallest integer k such that there exists a set of distinct points whose quad-tree is T and whose coordinates are integers in the range $\left[0,2^{k}\right)$?

6 Range Queries

Consider the following set of points in $[0,16] \times[0,16]$:
$p_{0}:(3,5), p_{1}:(7,8), p_{2}:(6,2), p_{3}:(8,0), p_{4}:(0,3), p_{5}:(4,6), p_{6}:(2,9), p_{7}:(9,1)$
a) Show the corresponding quad-tree.

b) Show the corresponding kd-tree.
c) Show one possible range tree. The primary tree should be perfectly balanced.
d) Show the corresponding Cartesian tree.
e) Show the priority search tree where the split-line coordinate is always the upper median.

7 Pattern Matching

Consider the pattern $P=0110101$ and the text T listed in the following table.

a) Indicate all the checks that were done by the brute-force method.
b) Consider the Karp-Rabin fingerprints that simply counts the number of 1 s in the bit-string. Is this a rolling hash-function? And using these fingerprints, how many checks where done during Karp-Rabin pattern matching?
c) Compute the KMP failure-function for P .
d) Show the KMP-automaton for P.
e) Show the good-suffix array (from the Boyer-Moore heuristic) for P.
f) Consider now the pattern $\mathrm{P}=$ fiddledidi. Show the last-occurrence array.

8 Suffix Trees

Jason discovered a secret message in the form of a Suffix Tree S, indicating the location of a hidden treasure.
a) Design an algorithm that recovers the original text T from its corresponding suffix tree S. The algorithm should run in $O(n)$ time while using $O(n)$ auxiliary space.
b) Determine the original text for the following suffix tree:

Figure 1: Mysterious Suffix Tree

9 Move-to-Front + Run-Length Encoding

Consider an ecoding algorithm tht utilizes the following fixed dictionary, where the alphabet consists of letters from A to P:

$$
\begin{array}{|c||c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \text { Char } & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } & \text { H } & \text { I } & \text { J } & \text { K } & \text { L } & \text { M } & \text { N } & \text { O } & \text { P } \\
\hline \text { Code } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline
\end{array}
$$

The steps of the encoding algorithm are:

- Encode each character with the dictionary above using 4-bit codewords, while also applying Move-ToFront.
- Encoding the resulting string with Run-Length-Encoding.
a) Decode the string 1000101100110011 , which was encoded using the algorithm described.
b) For each $n>1$, give an example of a valid string whose encoding has the minimum number of bits over all strings of length n.
c) For each $n>1$, give an example of a valid string whose encoding has the maximum number of bits over all strings of length n.

10 Consecutive Trie Strings

Given an uncompressed trie T that stores a list of binary strings, design an algorithm Consecutive $\left(b_{1}, b_{2}\right)$ that takes two binary strings in T as input, and outputs true if the strings are consecutive in pre-order traversal of the trie, and outputs false otherwise. Assume that branches are ordered as \$, 0, 1. The runtime should be bounded by $O\left(\left|b_{1}\right|+\left|b_{2}\right|\right)$.

For example, suppose T stores $\{000,01,0110,101,11\}$.
Consecutive $(0110,101)$ outputs true.
Consecutive $(01,000)$ outputs true.
Consecutive $(11,000)$ outputs false.

11 B-Trees

Consider the following B-Tree, of order 5:

Figure 2: B-Tree of order 5
a) Insert the following keys into the B-Tree, in the order given: 13, 53, 17. Show the tree after each insertion.
b) Delete the following keys from the original B-Tree, in the order given: 19, 43, 31, 29. When deciding between successor/predecessor, choose the successor. When deciding between left or right sibling for transfer/merge, select the right sibling. Show the tree after each deletion.

12 Red-black Trees

Consider the following red-black tree.

a) Show the 2-4 tree that corresponds to this tree.
b) Show the result of performing insert(30).

