Tutorial 02 - Priority Queues and More Asymptotic Analysis

CS 240E Winter 2022

University of Waterloo
Monday, January 17, 2022

1. Recursion:

Consider the following recursion: $T(0)=0$,

$$
T(n)=n+1+\min _{0 \leq i \leq n-1}\{T(i)+T(n-i-1)\} \quad \text { for } n \geq 1
$$

Show that $T(n) \geq(n+1) \log (n+1)$. Hint: convince yourself that $f(x)=x \log x$ is convex.

2. Binomial Heaps:

Perform the following operations on the binomial heap below, in order:

- Insert a node with key 4.
- Perform merge with the following binomial heap:

- Call deleteMax.

3. Multi-Way Tree:

Let T be a multi-way tree, i.e., nodes can have arbitrarily many children.
a) There is a simple way to convert a multi-way tree T into a binary tree T^{\prime} : each node of T also becomes a node in T^{\prime}, its leftmost child in T becomes the left child in T^{\prime}, and its sibling to the right in T becomes the right child in T^{\prime}. Show the binary tree that you get in this way if you start with the following multi-way tree:

b) For which binary trees T^{\prime} is there a multiway tree T that it corresponds to? Justify your answer by explaining how you would convert such a binary tree T^{\prime} into a multiway tree T.
c) Assume T^{\prime} is a flagged tree that satisfies the order-property of binomial heaps. What order-property does the corresponding multiway tree T have?

