
Tutorial 04 - Dictionaries & Amortized Analysis

CS 240E Winter 2022

University of Waterloo

Monday, January 31, 2022

1. 2-AVL Tree:
Let a 2-AVL tree be a binary search tree where for every node, the
difference of heights of its left and right subtree is at most 2. Prove that
a 2-AVL tree has height at most 3 log n where n is the number of nodes
in the tree.

2. Binary Counter:
A binary n-bit counter stores the current value of a counter as an array
A of length n that contains 0 or 1. It supports the operation Increment,
which adds 1 to the counter and operates as shown below:

void Increment(A, n) {

// A is an n-bit counter whose

// value is less than 2^n - 1

i <- 1

while (A[n-i] != 0) {

A[n-i] <- 0

i <- i + 1

}

A[n-i] <- 1

}

The running time for Increment(A, n) is Θ(k), where k is the final value
of variable i. This is Θ(n) in the worst case. Argue that the amortised
cost of Increment(A, n) is Θ(1).

1

3. Balanced BST:
Recall that a binary search tree is called perfectly balanced if for every
node v we have

|v.left.size− v.right.size| ≤ 1,

i.e., the size-difference between the left and right is as small as possible.
Show that in any perfectly balanced binary search tree T , the leaves are
only on the bottom two levels.

Hint: First consider the case where n = 2k − 1 for some integer k. Then
consider the case where n = 2k for some integer k. Finally for arbitrary
n, let k be the integer with 2k ≤ n < 2k+1. In all three cases, what are
the sizes of the subtrees, and hence where are the leaves, relative to k?

2

