
Tutorial 05 - Splay Trees & Re-orderings CS 240E Winter 2022 University of Waterloo Monday, February 7th, 2022

1. Splay Trees:

Given the following splay tree S, calculate its potential using the potential function

$$\Phi(i) := \sum_{v \in S} \log n_v^{(i)},$$

where $n_v^{(i)}$ is the number of nodes in the subtree rooted at v after i operations, including v itself. Insert the key 18. Calculate the new potential. Verify that the difference between the potential difference is less than $4 \log n - 2R + 2$, where R is the number of rotations.

2. Static Ordering:

Let A be an unordered array with n distinct items $k_0, ..., k_{n-1}$. Give an asymptotically tight Θ -bound on the expected access cost if you put A in the optimal static order for the following probability distributions:

(a)
$$p_i = \frac{1}{n}$$
 for $0 \le i \le n - 1$
(b) $p_i = \frac{1}{2^{i+1}}$, for $0 \le i \le n - 2$, $p_{n-1} = 1 - \sum_{i=0}^{n-2} p_i = \frac{1}{2^{n-1}}$

3. Dynamic Orderings:

Consider a linked list with the keys k_1, k_2, \ldots, k_n in that order. Give a sequence of n searches such that the Move-To-Front heurstic uses O(n) comparisons while the Transpose heuristic uses $\Omega(n^2)$ comparisons.