Tutorial 05 - Splay Trees \& Re-orderings
 CS 240E Winter 2022
 University of Waterloo
 Monday, February 7th, 2022

1. Splay Trees:

Given the following splay tree S, calculate its potential using the potential function

$$
\Phi(i):=\sum_{v \in S} \log n_{v}^{(i)},
$$

where $n_{v}^{(i)}$ is the number of nodes in the subtree rooted at v after i operations, including v itself. Insert the key 18. Calculate the new potential. Verify that the difference between the potential difference is less than $4 \log n-2 R+2$, where R is the number of rotations.

2. Static Ordering:

Let A be an unordered array with n distinct items k_{0}, \ldots, k_{n-1}. Give an asymptotically tight Θ-bound on the expected access cost if you put A in the optimal static order for the followng probability distributions:
(a) $p_{i}=\frac{1}{n}$ for $0 \leq i \leq n-1$
(b) $p_{i}=\frac{1}{2^{2+1}}$, for $0 \leq i \leq n-2, p_{n-1}=1-\sum_{i=0}^{n-2} p_{i}=\frac{1}{2^{n-1}}$

3. Dynamic Orderings:

Consider a linked list with the keys $k_{1}, k_{2}, \ldots, k_{n}$ in that order. Give a sequence of n searches such that the Move-To-Front heurstic uses $O(n)$ comparisons while the Transpose heuristic uses $\Omega\left(n^{2}\right)$ comparisons.

