Tutorial 06 - Searching \& Tries
 CS 240E Winter 2022
 University of Waterloo
 Monday, February 14th, 2022

1. Interpolation Search:

This assignment will guide you towards a proof that a different modification of interpolation search also has expected run-time $O(\log \log n)$. Consider the modification shown in Algorithm 1 below, which compares not only at $A[m]$, but also at two indices m_{ℓ} and m_{r} that are roughly \sqrt{N} indices to the left and right of m, and repeats in the appropriate sub-array.

```
Algorithm 1: interpolation-search-3way( \(A, n, k)\)
    Input: Sorted array \(A\) of \(n\) integers, key \(k\)
    if ( \(k<A[0]\) ) then return "not found, would be left of index 0 ";
    if \((k>A[n-1])\) then return "not found, would be right of index \(n-1\) ";
    if ( \(k=A[n-1]\) ) then return "found at index \(n-1\) ";
    \(\ell \leftarrow 0, r \leftarrow n-1 ;\)
    while \(r \geq \ell+2\) do \(\quad / /\) inv: \(A[\ell] \leq k<A[r]\)
        \(N \leftarrow r-\ell-1, \quad p \leftarrow \frac{k-A[\ell])}{A[r]-A[\ell]}, \quad \mu \leftarrow p \cdot N, m \leftarrow \ell+\lceil\mu\rceil ;\)
        \(m_{\ell} \leftarrow \max \left\{\ell, m-\lfloor\sqrt{N}\} ; m_{r} \leftarrow \min \{r, m+\lfloor\sqrt{N}\rfloor\} ;\right.\)
        if \(\left(k<A\left[m_{\ell}\right]\right)\) then \(r \leftarrow m_{\ell}\);
        else if \(\left(k<A[m]\right.\) then \(\ell \leftarrow m_{\ell}, r \leftarrow m\);
        else if \(\left(k<A\left[m_{r}\right]\right.\) then \(\ell \leftarrow m, r \leftarrow m_{r}\);
        else \(\ell \leftarrow m_{r}\);
    end
    // \(r \leq \ell+1\) and \(A[\ell] \leq k<A[r]\), so \(r=\ell+1\) and \(k\) can only be \(A[\ell]\)
    if ( \(k=A[\ell]\) ) then return "found at index \(\ell\) ";
    else return "not found, would be between index \(\ell\) and \(\ell+1\) ";
```

a) Assume that the items in A were randomly and uniformly chosen. Consider one execution of the while-loop, and call search-key k good $A\left[m_{\ell}\right] \leq k<A\left[m_{r}\right]$ and bad otherwise. Show that $P(k$ is good $) \geq \frac{3}{4}$.

You may assume that all items in A are distinct. You may also ignore rounding issues, i.e., assume N is a perfect-square and μ is an integer.
(Hint: Define $i d x(k)$ and $\operatorname{offset}(k)$ as we did in class and use the properties of offset (k) that we derived there.)
b) Let $T(n)$ be the expected run-time on n items if items in A were randomly and uniformly chosen, Argue that $T(n)$ satisfies the recursion $T(n) \leq T(\sqrt{n})+O(1)$.
You may make the same assumptions as in the previous part, and also use without proof that $T(n)$ is monotone, i.e., $T(n-1) \leq T(n)$. Hint: What is the run-time if k is good? What if k is bad?

Note that the last part implies that $T(n) \in O(\log \log n)$ as shown in class.

2. Numbers \& Tries:

Consider sorting the following base-4-numbers: $300,211,112,230,1,0$, 12, 101, 233, 110.
a) Illustrate how you would sort them with MSD-radix sort, by drawing the recursion tree and the subarray in each recursion.
b) Show the corresponding 4 -way pruned trie.
c) Show that the expected time to insert a base-4-number into a 4 way pruned trie is less than $\log _{4} n+O(1)$, assuming all numbers have been uniformly chosen. You may assume the numbers have been padded with 0 s so that all numbers begin with the same place value.

3. Words \& Tries:

Suppose we have n English words (26-letter alphabet), where the combined length of all words is ℓ. Give an algorithm to sort the strings in $O(\ell)$ time in lexicographical ordering, e.g., " $a "<" a b "<" b "$.

