Tutorial 08 - Range Search Solutions
 CS 240E Winter 2022
 University of Waterloo
 Monday, March 7th, 2022

1. Burrows-Wheeler Transform:

a) For arbitrarily large N, construct a set of points such that the quad-tree has at least N nodes, and construct a range-search such that all nodes are visited, and not a single point gets returned.

Solution Idea.

Place points at $(0, y)$ for $y=0, \cdots, 2^{l}-1$, where $2^{l}>N$. This violates general position, so let the ith x-coordinate be $\frac{1}{2 i+1}$. Then each y -coordinate is less than $\frac{1}{2}$, and each point is in general position. The bounding box will be $\left[0,2^{l}\right)^{2}$. Also, the side length of each square containing the points is 1 , since it takes l subdivisions to separate all the points. Then the query rectangle $\left[0.5,2^{l}\right)^{2}$ intersects all regions containing the points, so all nodes are visited. But clearly no point is returned as no point has an x -coordinate of at least 0.5.
b) Assume that T is a quad-tree (with at least two points) such that during some range-search, there is at least one outside node and at least one inside-node. The example from Module 8 (slide 11) satisfies this. What is the minimum possible height of T ? The example has height 3 , so the question is asking whether height 3 is always required, or whether this could also happen with height 2 or even height 1.

Solution Idea.

Recall that an inside node is a node whose region is completely contained in the query rectangle while an outside node is a node whose region is disjoint from the query rectangle.
You cannot construct a quad-tree satisfying the constraints with height 0 , since then there could only be one point, and it would either be an inside-node, an outsidenode, or a boundary node, depending on how the query rectangle intersects the boundary region.

You can construct a quad-tree satisfying the constraints with height 1. For instance, take the points $(1,1),(3,3)$, which have the bounding box $[0,4)^{2}$. Then take the query rectangle $[0,2)^{2}$. It completely contains the region of the point $(1,1)$ but is disjoint from that of $(3,3)$ (which is $[2,4)^{2}$).

