Tutorial 10 - String Matching
 CS 240E Winter 2022
 University of Waterloo
 Monday, March 21st, 2022

1. Cyclic Shift:

Given two strings w and x of length n, determine if w can be obtain by cyclically shifting the characters of x. For example, your algorithm should return true if the inputs are alloy and loyal, and false if the inputs are tarot and otter. Your algorithm should take $O(n)$ time for two strings of length n.

2. Boyer-Moore:

Apply the Boyer-Moore algorithm to the following pattern and text. Show two shifts each with only the bad-character heuristic, or with the good-suffix heuristic.

$T:$| d | a | y | s | a | y | m | a | y | a | a | a | y | b | a | y | l | a | y | k | a | y | r | a | y | j | a | y |
| :--- |
| $\mathrm{P}:$ | d | a | y | d | a | y | h | a | y | a | y | a | y | | | | | | | | | | | | | | |
| |
| |

3. Most Common Substring:

Let s be a string of length n and let \mathcal{T}_{s} denote the corresponding suffix tree. For an integer parameter $1 \leq \ell \leq n$, give an $O(n)$ time algorithm that finds the most commonly occurring substring of length ℓ in s.

