Tutorial 11 - Compression CS 240E Winter 2022 University of Waterloo Monday, March 28th, 2022

1. Huffman Encoding 1:

- a) Build the Huffman tree for S = "pusheen"
- b) Below is an encoding trie T for the string "xerxes". Argue that this is *not* a Huffman tree.

2. Huffman Encoding 2:

Let c_1, \ldots, c_k be the characters of a text, sorted by increasing frequencies. Let $s(c_1), \ldots, s(c_k)$ be the prefix-free encoding of these characters obtained with the Huffman encoding algorithm.

- a) Prof. I.N. Correct thinks that $s(c_1)$ must have the shortest codeword, i.e., $|s(c_1)| \le |s(c_i)|$ for all i = 2, ..., k. Show that the professor is incorrect.
- b) Show that the professor is correct if the frequency of c_1 is *strictly* larger than all other frequencies.

3. LZW Encoding 1:

For the following LZW problems, consider the initial dictionary to be the ASCII table.

- a) Encode the following string using LZW: BANANA_BANDANA
- b) Decode the following encoded string using LZW:

71 - 73 - 86 - 69 - 95 - 77 - 131 - 82 - 69 - 128 - 137 - 65 - 83

4. LZW Encoding 2:

Let S be a string of length n. Argue that the LZW encoding of S must use $\Omega(\sqrt{n})$ integers.