Tutorial 12 - Compression \& External Memory
 CS 240E Winter 2022
 University of Waterloo
 Monday, April 4th, 2022

1. Burrows-Wheeler Transform:

a) Encode the following string using BWT: TORONTO
b) Decode the following string using the inverse BWT: IPSSM\$PISSII
2. (2, 4)-Trees Insert/Delete:

For the following (2, 4)-Tree, perform the following operations:
a) Insert 30, Insert 75, Insert 24, Insert 56
b) Delete 56, Delete 24, Delete 75, Delete 30

When deciding between successor/predecessor, choose the successor. When deciding between left or right sibling for transfer/merge, select the right sibling.

3. Red Black Trees:

This problem involves converting between 2-4 trees and red black trees.
a) Convert the following 2-4 tree to a red-black tree.

b) Convert the following red-black tree to a 2-4 tree:

4. (a, b)-Trees:

Let T_{n}^{M} be a $(M / 2, M)$-tree obtained by inserting $1,2, \ldots, n$ (in this order). What is the smallest n for which T_{n}^{M} has height 1? What is the largest n for which T_{n}^{M} has height 1?

