University of Waterloo
 CS240E, Winter 2023

 Assignment 3

 Assignment 3}

Due Date: Wednesday, March 8, 2023, at 5pm

Be sure to read the assignment guidelines (http://www.student.cs.uwaterloo.ca/ ~cs240e/w23/guidelines/guidelines.pdf). Submit your solutions electronically as individual PDF files named a3q1.pdf, a3q2.pdf, ... (one per question).

Ensure you have read, signed, and submitted the Academic Integrity Declaration AID02.TXT.

Grace period: submissions made before 11:59PM on March 8, will be accepted without penalty. Please note that submissions made after 11:59PM will not be graded and may only be reviewed for feedback.

Question $1 \quad[6+6=12$ marks $]$

Consider the following algorithm to find the minimum in a binary search tree.

```
Algorithm 1: findMin(root \(r\) )
    if ( \(r\) is null) then return "empty tree"
    while r.leftChild \(!=\) null do \(r \leftarrow r\).leftChild
    return r.key
```

Let $T^{\text {avg }}(n)$ (for $n \geq 0$) be the average-case number of executions of the while-loop in findMin for a tree with n nodes. Here the average is taken over all binary search trees that store $\{0, \ldots, n-1\}$, and $T^{\text {avg }}(0)=T^{\text {avg }}(1)=0$.
a) Show that for $n \geq 2$ we have $T^{\text {avg }}(n) \leq 1+\frac{1}{C(n)} \sum_{i=0}^{n-1} C(n-i-1) C(i) T^{\text {avg }}(i)$, where $C(n)$ is the number of binary search trees that stores $\{0, \ldots, n-1\}$. Be as precise as we were in class for avgCaseDemo.
b) Show that $T^{\text {avg }}(n) \in O(\log n)$. (We recommend that you show $T^{\text {avg }}(n) \leq 2 \log n$, and that you consider a 'good case' where the left subtree has size at most $n / 2$.) You may use without proof that $C(n)=\sum_{i=0}^{n-1} C(i) \cdot C(n-i-1)$, and you may assume that n is divisible as needed.)

Question $2 \quad[8+5(+3)=13(+3)$ marks $]$

In an AVL-tree, a lot of time is spent during updates on doing rotations. We can cut down on the number of rotations by allowing a larger imbalance. Let a k-AVL-tree (for some integer $k \geq 1$) be a binary search tree where for every node, the difference of heights of its left and right subtree is at most k.
a) Show that any k-AVL-tree (for $k \geq 1$) has height at most $(k+1) \log (n+1)$.
b) Show that any 2 -AVL-tree has height at most $2 \log (n+1)$.
c) [Bonus] Improve the bound of part (a): thus, show that the height of a k-AVL-tree is at most $c(k+1) \log (n+1)$ for some constant $c<1$. How small can you make c ? You may assume constant lower bounds on k as needed, e.g., $k \geq 2$.

Question $3 \quad[3+5=8$ marks $]$

Recall that the Selection problem receives as input a set of n items and an integer k with $0 \leq k \leq n-1$ and it must return the item that would be at $A[k]$ if the items were put into an array A in sorted order.

1. Argue that any comparison-based algorithm for the Selection problem on n keys must have $\Omega(\log n)$ worst-case time.
2. Let T be an scapegoat $\left(\frac{2}{3}\right)$-tree that stores n items. Argue that $\operatorname{Selection}(T, k)$ can be done in $O(\log n)$ time.

Question 4 [5 marks]

Let S be a skip list with $n \geq 4$ items. Assume that the lists $S_{0}, S_{1}, \ldots, S_{h}$ of S have the following property for all $0 \leq i<h$.

$$
\text { If }\left|S_{i}\right|=1 \text { then }\left|S_{i+1}\right|=0 \text {. If }\left|S_{i}\right|>1 \text {, then }\left|S_{i+1}\right| \leq \sqrt{\left|S_{i}\right|} \text {. }
$$

What is the maximum possible value of h, relative to n ? For full marks, you should give an exact bound (no asymptotics), make no assumptions on the divisibility of n, and show that your bound is tight for infinitely many some values of n. (But part-marks may be given otherwise.) Justify your answer.

Question 5 [3 marks]

Let A be an unordered array with n distinct items k_{0}, \ldots, k_{n-1}. Give an asymptotically tight Θ-bound on the expected access-cost if you put A in the optimal static order for the following probability distribution:

$$
p_{i}=\frac{1}{(i+1) H_{n}} \text { for } 0 \leq i \leq n-1 \text { where } H_{n}=\sum_{j=1}^{n} \frac{1}{j} .
$$

For example, for $n=4$ we have $H_{4}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{25}{12}$ and the items would have access probabilities $\left\langle\frac{12}{25}, \frac{6}{25}, \frac{4}{25}, \frac{3}{25}\right\rangle$.

