
University of Waterloo

CS240E, Winter 2023

Assignment 4

Due Date: Wednesday, March 22, 2023 at 5pm

Be sure to read the assignment guidelines (http://www.student.cs.uwaterloo.ca/

~cs240e/w23/guidelines/guidelines.pdf). Submit your solutions electronically as indi-
vidual PDF files named a4q1.pdf, a4q2.pdf, . . . (one per question).

Question 1 [1+2+2+5=10 marks]

Assume we have a hash function h for some table-size M ≥ 2, and define a probe sequence
as follows:

h(k, 0) = h(k)

h(k, i) = h(k, i− 1) + i mod M for 1 ≤ i < M

a) Write the probe sequence for h(k) = 0 and M = 8 starting from i = 0 to i = M − 1.

b) Show that this probe sequence is an instance of quadratic probing.

c) Show that if h(k, i)=h(k, j) for some 0 ≤ i < j < M , then (j−i)(j+i+1)=0 mod 2M .

d) Assume that M is a power of 2, say M = 2m for some integer m. Prove that all entries
in the probe sequence are different, therefore the probe sequence will hit an empty slot.

Question 2 [2+4+5 = 11 marks]

We have seen one method of obtaining a universal family of hash-functions in class. This
assignment discusses another one. Let us assume that all keys come from some universe
{0, . . . , U − 1}, where U = 2u. Therefore any key k can be viewed as bitstring xk of length
u by taking its base-2 representation.

Let us assume further that the hash-table-size M is M = 2m for some integer m, with
m < u. To choose a hash-function, we now randomly choose each entry in a m × u-matrix
H to be 0 or 1 (equally likely). Then compute hk = (Hxk)%2, where xk is now viewed as a
vector and ‘%2’ is applied to each entry. The output is a m-dimensional vector with entries
in {0, 1}; interpreting it as a length-m bitstring gives a number {0, ...,M − 1} that we use
as hash-value h(k). For example, if k = 18, u = 5, m = 3 and H is as shown below, then

1

http://www.student.cs.uwaterloo.ca/~cs240e/w23/guidelines/guidelines.pdf
http://www.student.cs.uwaterloo.ca/~cs240e/w23/guidelines/guidelines.pdf


h(k) = 1 since

 0 1 1 0 1
1 0 0 1 1
0 0 0 1 0


︸ ︷︷ ︸

H


1
0
0
1
0


︸ ︷︷ ︸

18 as length-5 bitstring

%2 =

 0
2
1


︸ ︷︷ ︸

Hxk

%2 =

 0
0
1


︸ ︷︷ ︸

1 as length-3 bitstring

a) Let H be the above matrix, u = 5 and m = 3. Consider the keys 9 and 13. What are
their hash-values (as numbers in {0, . . . ,M − 1}? Show your work.

b) Consider again u = 5,m = 3 and keys k = 9 and k′ = 13. Consider the same matrix H,
except that the bits in the third column are randomly chosen. What is the probability
that h(k) = h(k′)? Justify your answer.

c) Assume now that all of H is chosen randomly and independently. Show that (for any
u,m) this gives a universal hash function family, or in other words, P (h(k) = h(k′)) ≤ 1

M

for any two keys k ̸= k′.

d) [Possibly graded, 2 marks] This method for obtaining universal hash-functions is much
less popular than using the Carter-Wegman functions. Why do you think that that might
be the case? (Expected length of answer is 1-3 sentences.)

Question 3 [1+2+9+5+4=21 marks]

This assignment asks you to compare the performance of the MTF-heuristic for binary search
trees with splay trees.

a) Consider the binary search tree shown on the right.

i) What is its potential function value when viewed as a splay
tree? (State it with two fractional digits.)

ii) Show the binary search tree that results if you perform
splayTree::search(50).

For both part-questions, it suffices to state the correct final answer
but we recommend showing some intermediate steps so we can give
part-marks in case of errors.

70

20

30

40

60

50

b) Let T be a binary search tree with n nodes and height h = n− 1, i.e., T is a path from
the root to a unique leaf x. Show that if we perform splayTree::search(k) for the key k
at x, then the resulting tree T ′ has height at most h/2 + c for some constant c. Make
c as small as possible.

2



Hint: Show a bound on the height of the subtree rooted at x after you have done i
operations.

c) Create an example of a binary search tree T with n nodes and a sequence of Θ(n)
operations BST-MTF::search for keys in T such that the total number of rotations is
in Θ(n2).

d) Prof. I.N.Correct claims that for any n they have an example of a binary search tree T
with n nodes and a sequence of n operations SplayTree::search for keys in T such that
the total number of rotations is in Θ(n2). In particular the actual run-time for these
n operations is in Ω(n2).

Prove that this is impossible.

Question 4 [3 marks]

Recall interpolation-search (Algorithm 6.3 from the course notes) and consider its perfor-
mance for the sorted array A[0..n−1] where A[i] = ai + b for 0 ≤ i ≤ n − 1 (for some
constants a > 0 and b that are arbitrary real numbers). Show that then a search for a key
k always takes O(1) time, regardless of whether key k is in A or not.

Question 5 [8 marks]

This question concerns sorting a set of infinite-precision numbers x0, . . . , xn−1. Specifically,
each xi is in [0, 1) and written in base-2. It is given to you implicitly, via an accessor-function
get-decimal-place(i, d), which returns the bit in the dth decimal place of xi. For example, if
xi = 0.001001... then get-decimal-place(i, 3) = 1 and get-decimal-place(i, 4) = 0. Function
get-decimal-place takes Θ(1) time.

Describe an algorithm to sort these (implicitly given) numbers x0, . . . , xn−1 in O(n log n)
expected time, assuming the numbers x0, . . . , xn−1 have been randomly and uniformly chosen
from the interval [0, 1). You may also assume that all numbers are distinct. Note that
comparing xi and xj is not a constant-time operation! Your output should be the sorting-
permutation π (i.e., xπ(0) < xπ(1) < · · · < xπ(n−1)).

A high-level description is enough, no need for pseudo-code, and the correctness can be
extremely short. (But do argue the run-time carefully.)

Question 6 [moved to A5]

This question is moved to Assignment 5. It should not be submitted to A4 MarkUs.

3


	[1+2+2+5=10 marks]
	[2+4+5 = 11 marks]
	[1+2+9+5+4=21 marks]
	[3 marks]
	[8 marks]
	[moved to A5]

