University of Waterloo
 CS240E, Winter 2023

 Assignment 4

 Assignment 4}

Due Date: Wednesday, March 22, 2023 at 5pm
Be sure to read the assignment guidelines (http://www.student.cs.uwaterloo.ca/ \sim cs240e/w23/guidelines/guidelines.pdf). Submit your solutions electronically as individual PDF files named a4q1.pdf, a4q2.pdf, ... (one per question).

Question $1 \quad[1+2+2+5=10$ marks $]$

Assume we have a hash function h for some table-size $M \geq 2$, and define a probe sequence as follows:

$$
\begin{aligned}
h(k, 0) & =h(k) \\
h(k, i) & =h(k, i-1)+i \bmod M \quad \text { for } 1 \leq i<M
\end{aligned}
$$

a) Write the probe sequence for $h(k)=0$ and $M=8$ starting from $i=0$ to $i=M-1$.
b) Show that this probe sequence is an instance of quadratic probing.
c) Show that if $h(k, i)=h(k, j)$ for some $0 \leq i<j<M$, then $(j-i)(j+i+1)=0 \bmod 2 M$.
d) Assume that M is a power of 2 , say $M=2^{m}$ for some integer m. Prove that all entries in the probe sequence are different, therefore the probe sequence will hit an empty slot.

Question $2 \quad[2+4+5=11$ marks $]$

We have seen one method of obtaining a universal family of hash-functions in class. This assignment discusses another one. Let us assume that all keys come from some universe $\{0, \ldots, U-1\}$, where $U=2^{u}$. Therefore any key k can be viewed as bitstring x_{k} of length u by taking its base- 2 representation.

Let us assume further that the hash-table-size M is $M=2^{m}$ for some integer m, with $m<u$. To choose a hash-function, we now randomly choose each entry in a $m \times u$-matrix H to be 0 or 1 (equally likely). Then compute $h_{k}=\left(H x_{k}\right) \% 2$, where x_{k} is now viewed as a vector and ' $\% 2$ ' is applied to each entry. The output is a m-dimensional vector with entries in $\{0,1\}$; interpreting it as a length- m bitstring gives a number $\{0, \ldots, M-1\}$ that we use as hash-value $h(k)$. For example, if $k=18, u=5, m=3$ and H is as shown below, then
$h(k)=1$ since

$$
\underbrace{\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)}_{H} \underbrace{\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0
\end{array}\right)}_{18 \text { as length-5 bitstring }} \% 2=\underbrace{\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)}_{H x_{k}} \% 2=\underbrace{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)}_{1 \text { as length-3 bitstring }}
$$

a) Let H be the above matrix, $u=5$ and $m=3$. Consider the keys 9 and 13 . What are their hash-values (as numbers in $\{0, \ldots, M-1\}$? Show your work.
b) Consider again $u=5, m=3$ and keys $k=9$ and $k^{\prime}=13$. Consider the same matrix H, except that the bits in the third column are randomly chosen. What is the probability that $h(k)=h\left(k^{\prime}\right)$? Justify your answer.
c) Assume now that all of H is chosen randomly and independently. Show that (for any $u, m)$ this gives a universal hash function family, or in other words, $P\left(h(k)=h\left(k^{\prime}\right)\right) \leq \frac{1}{M}$ for any two keys $k \neq k^{\prime}$.
d) [Possibly graded, 2 marks] This method for obtaining universal hash-functions is much less popular than using the Carter-Wegman functions. Why do you think that that might be the case? (Expected length of answer is 1-3 sentences.)

Question $3 \quad[1+2+9+5+4=21$ marks $]$

This assignment asks you to compare the performance of the MTF-heuristic for binary search trees with splay trees.
a) Consider the binary search tree shown on the right.
i) What is its potential function value when viewed as a splay tree? (State it with two fractional digits.)
ii) Show the binary search tree that results if you perform splayTree::search(50).

For both part-questions, it suffices to state the correct final answer but we recommend showing some intermediate steps so we can give part-marks in case of errors.

b) Let T be a binary search tree with n nodes and height $h=n-1$, i.e., T is a path from the root to a unique leaf x. Show that if we perform $\operatorname{splayTree::Search}(k)$ for the key k at x, then the resulting tree T^{\prime} has height at most $h / 2+c$ for some constant c. Make c as small as possible.

Hint: Show a bound on the height of the subtree rooted at x after you have done i operations.
c) Create an example of a binary search tree T with n nodes and a sequence of $\Theta(n)$ operations BST-MTF::search for keys in T such that the total number of rotations is in $\Theta\left(n^{2}\right)$.
d) Prof. I.N.Correct claims that for any n they have an example of a binary search tree T with n nodes and a sequence of n operations SplayTree::search for keys in T such that the total number of rotations is in $\Theta\left(n^{2}\right)$. In particular the actual run-time for these n operations is in $\Omega\left(n^{2}\right)$.
Prove that this is impossible.

Question 4 [3 marks]

Recall interpolation-search (Algorithm 6.3 from the course notes) and consider its performance for the sorted array $A[0 . . n-1]$ where $A[i]=a i+b$ for $0 \leq i \leq n-1$ (for some constants $a>0$ and b that are arbitrary real numbers). Show that then a search for a key k always takes $O(1)$ time, regardless of whether key k is in A or not.

Question 5 [8 marks]

This question concerns sorting a set of infinite-precision numbers x_{0}, \ldots, x_{n-1}. Specifically, each x_{i} is in $[0,1)$ and written in base-2. It is given to you implicitly, via an accessor-function get-decimal-place (i, d), which returns the bit in the d th decimal place of x_{i}. For example, if $x_{i}=0.001001 \ldots$ then get-decimal-place $(i, 3)=1$ and get-decimal-place $(i, 4)=0$. Function get-decimal-place takes $\Theta(1)$ time.

Describe an algorithm to sort these (implicitly given) numbers x_{0}, \ldots, x_{n-1} in $O(n \log n)$ expected time, assuming the numbers x_{0}, \ldots, x_{n-1} have been randomly and uniformly chosen from the interval $[0,1)$. You may also assume that all numbers are distinct. Note that comparing x_{i} and x_{j} is not a constant-time operation! Your output should be the sortingpermutation π (i.e., $\left.x_{\pi(0)}<x_{\pi(1)}<\cdots<x_{\pi(n-1)}\right)$.

A high-level description is enough, no need for pseudo-code, and the correctness can be extremely short. (But do argue the run-time carefully.)

Question 6 [moved to A5]

This question is moved to Assignment 5. It should not be submitted to A4 MarkUs.

