University of Waterloo
 CS240E, Winter 2023

 Assignment 5

 Assignment 5}

Due Date: Wednesday, April 5, 2023, at 5pm
Be sure to read the assignment guidelines (http://www.student.cs.uwaterloo.ca/ ~cs240e/w23/guidelines/guidelines.pdf). Submit your solutions electronically as individual PDF files named a5q1.pdf, a5q2.pdf, ... (one per question).

Question $1 \quad[4+3+2+3=12$ marks $]$

Let P be a set of n points in general position. A 2-dimensional partial match query specifies a value a, and asks whether there are any points in P that have either x-coordinate a or y-coordinate a (or both).
a) Assume P is stored in a 2-dimensional kd-tree. Design an algorithm that can answer a partial match query in $O(\sqrt{n})$ time.
b) Argue that any comparison-based algorithm to do partial matches must use $\Omega(\log n)$ comparisons on some instance of size n.
c) Assume P is stored in a 2-dimensional range-tree. Design an algorithm to answer a partial match query. Make it as efficient as you can. It suffices to describe the idea and analyze the run-time.
d) Design a data structure to store P that uses $O(n)$ space and permits to insert points, delete points, and answer 2-dimensional partial match queries in $O(\log n)$ worst-case time. Briefly say how these operations are implemented.

Question $2 \quad[5+5=10$ marks $]$

A range-counting-query is like a range search, except that you only need to report how many items fall into the range, you do not need to list which items they are.
a) Describe how any balanced binary search tree can be modified such that a range counting query can be performed in $O(\log n)$ time (independent of s, the number of points in the query-interval). Briefly state the changes needed, then describe the algorithm for the range counting query.
b) Now consider the 2-dimensional-case: Describe an appropriate range-tree based data structure such that you can answer range-counting-queries among 2-dimensional points in time $O\left((\log n)^{2}\right)$. Then describe the algorithm for the range counting query.

Question 3 [7 marks]

Let T be a 01-string of length n. Describe an algorithm that has run-time $O(n)$ and finds the longest pattern P that occurs at least twice in T.

The two occurrences of P may overlap each other (e.g. for $T=011010100$, we have $P=1010$) and they need not be adjacent (e.g. for $T=0111010111$ we have $P=0111$). If there are multiple such patterns P, then an arbitrary one should be returned.

Question $4 \quad[3+3+3=9$ marks]

We are searching for pattern P in text T where $|T|=n,|P|=m$, and $n \geq m \geq 1$.
a) Show that any pattern matching algorithm must look at at least $\lfloor n / m\rfloor$ characters of T in the worst case.
b) Consider pattern $P=0^{m}$ and let text T be a string of $n \geq m$ bits that were randomly chosen to be 0 or 1 with equal probability. Let X be the number of checks done by Boyer-Moore until it mismatches for the first time or returns with success. (The check that leads to a mismatch is included in this count.) Show that $E[X] \leq 2$.
c) Consider the same setup as in the previous part. Assume you just had a mismatch. Show that the expected amount by which you shift the guess forward is at least $m-1$.

Motivation: For the special string $P=0^{m}$, the expected number of checks is hence $\approx 2 \frac{n}{m-1}$ (i.e., roughly within a factor 2 of the lower bound) because you expect to do 2 checks until a mismatch and then shift forward by $m-1$ characters.

Question $5 \quad[2+4+7=13$ marks $]$

a) Consider the text $S=$ ARECEDEDDEER. Show a Huffman-trie for this text (using $\Sigma_{S}=$ $\{A, C, D, E, R\}$). Also indicate with every node (including interior nodes) the frequency that this node had when building the Huffman-trie.
b) Assume we have characters x_{1}, \ldots, x_{n} where x_{i} has frequency $F(i)$. Here $F(i)$ is the Fibonacci-sequence: $F(1)=1, F(2)=1, F(i)=F(i-1)+F(i-2)$ for $i \geq 3$. Argue that any Huffman tree of these characters has height $n-1$.
Hint: For $i \geq 2$, what is the frequency associated with the parent p_{i} of x_{i} ?
c) Assume we have characters x_{1}, \ldots, x_{n} where x_{i} has frequency f_{i} and $\min _{i}\left\{f_{i}\right\}=1$. Assume further that some Huffman-tree T for these characters has height $n-1$. Argue that $\max _{i}\left\{f_{i}\right\} \geq F(n-1)$, where $F(\cdot)$ is again the Fibonacci-sequence.
Hint: Use the structure of a binary tree of height $n-1$ to enumerate your characters suitably, and then argue a lower bound on f_{i} and on the frequency associated with the parent p_{i} of x_{i}.

